144 Projects, page 1 of 15
Loading
- Project . 2020 - 2022Funder: UKRI Project Code: EP/V043811/1Funder Contribution: 497,214 GBPPartners: University of Toronto, University of Liverpool
Coronaviruses are transmitted from an infectious individual through large respiratory droplets generated by coughing, sneezing or speaking. These infectious droplets are then transmitted to the mucosal surfaces of a recipient through inhalation of the aerosol or by contact with contaminated fomites such as surfaces or other objects. In healthcare settings, personal protective equipment (PPE) plays a crucial role in interrupting the transmission of highly communicable diseases such as COVID19 from patients to healthcare workers (HCWs). However, research has shown that PPE can also act as a fomite during the donning and doffing process as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can survive on these surfaces for up to three days. This creates a need for more effective PPE materials that can provide antiviral protection. In this proposal we aim to develop a dual action antiviral/antifouling coating to lower the risk of transmission of the SARS-CoV-2 to HCWs from COVID19 patients. This project will deliver antiviral/antifouling coatings that can be readily applied to PPE surfaces such as faceshields that are likely to encounter a high level of viral load and would be of great benefit to the health of clinical staff. Furthermore, this project has embedded into its planning a rapid pathway for optimisation, translation, and upscaling of manufacture to deliver a low-cost technology within a short timescale.
- Project . 2019 - 2027Funder: UKRI Project Code: EP/S023836/1Funder Contribution: 5,530,580 GBPPartners: University of Cambridge, Knowledge Transfer Network Limited, Huazhong University of Sci and Tech, NTU, UoC, Offshore Renewable Energy Catapult, AVID Vehicles Ltd, Northumbria University, Scottish Power Energy Networks Holdings Limited, Enocell Ltd...
The EPSRC Centre for Doctoral Training in Renewable Energy Northeast Universities (ReNU) is driven by industry and market needs, which indicate unprecedented growth in renewable and distributed energy to 2050. This growth is underpinned by global demand for electricity which will outstrip growth in demand for other sources by more than two to one (The drivers of global energy demand growth to 2050, 2016, McKinsey). A significant part of this demand will arise from vast numbers of distributed, but interconnected devices (estimated to reach 40 billion by 2024) serving sectors such as healthcare (for ageing populations) and personal transport (for reduced carbon dioxide emission). The distinctive remit of ReNU therefore is to focus on materials innovations for small-to-medium scale energy conversion and storage technologies that are sustainable and highly scalable. ReNU will be delivered by Northumbria, Newcastle and Durham Universities, whose world-leading expertise and excellent links with industry in this area have been recognised by the recent award of the North East Centre for Energy Materials (NECEM, award number: EP/R021503/1). This research-focused programme will be highly complementary to ReNU which is a training-focused programme. A key strength of the ReNU consortium is the breadth of expertise across the energy sector, including: thin film and new materials; direct solar energy conversion; turbines for wind, wave and tidal energy; piezoelectric and thermoelectric devices; water splitting; CO2 valorisation; batteries and fuel cells. Working closely with a balanced portfolio of 36 partners that includes multinational companies, small and medium size enterprises and local Government organisations, the ReNU team has designed a compelling doctoral training programme which aims to engender entrepreneurial skills which will drive UK regional and national productivity in the area of Clean Growth, one of four Grand Challenges identified in the UK Government's recent Industrial Strategy. The same group of partners will also provide significant input to the ReNU in the form of industrial supervision, training for doctoral candidates and supervisors, and access to facilities and equipment. Success in renewable energy and sustainable distributed energy fundamentally requires a whole systems approach as well as understanding of political, social and technical contexts. ReNU's doctoral training is thus naturally suited to a cohort approach in which cross-fertilisation of knowledge and ideas is necessary and embedded. The training programme also aims to address broader challenges facing wider society including unconscious bias training and outreach to address diversity issues in science, technology, engineering and mathematics subjects and industries. Furthermore, external professional accreditation will be sought for ReNU from the Institute of Physics, Royal Society of Chemistry and Institute of Engineering Technology, thus providing a starting point from which doctoral graduates will work towards "Chartered" status. The combination of an industry-driven doctoral training programme to meet identifiable market needs, strong industrial commitment through the provision of training, facilities and supervision, an established platform of research excellence in energy materials between the institutions and unique training opportunities that include internationalisation and professional accreditation, creates a transformative programme to drive forward UK innovation in renewable and sustainable distributed energy.
- Project . 2009 - 2018Funder: UKRI Project Code: EP/H009612/1Funder Contribution: 5,814,410 GBPPartners: Purdue University West Lafayette, Dalhousie University, OSU-OKC, University of California, Berkeley, University of London, Lighting Education Trust, LBL, KU, Waseda University, Helsinki University of Technology...
Reducing carbon emissions and securing energy supplies are crucial international goals to which energy demand reduction must make a major contribution. On a national level, demand reduction, deployment of new and renewable energy technologies, and decarbonisation of the energy supply are essential if the UK is to meet its legally binding carbon reduction targets. As a result, this area is an important theme within the EPSRC's strategic plan, but one that suffers from historical underinvestment and a serious shortage of appropriately skilled researchers. Major energy demand reductions are required within the working lifetime of Doctoral Training Centre (DTC) graduates, i.e. by 2050. Students will thus have to be capable of identifying and undertaking research that will have an impact within their 35 year post-doctoral career. The challenges will be exacerbated as our population ages, as climate change advances and as fuel prices rise: successful demand reduction requires both detailed technical knowledge and multi-disciplinary skills. The DTC will therefore span the interfaces between traditional disciplines to develop a training programme that teaches the context and process-bound problems of technology deployment, along with the communication and leadership skills needed to initiate real change within the tight time scale required. It will be jointly operated by University College London (UCL) and Loughborough University (LU); two world-class centres of energy research. Through the cross-faculty Energy Institute at UCL and Sustainability Research School at LU, over 80 academics have been identified who are able and willing to supervise DTC students. These experts span the full range of necessary disciplines from science and engineering to ergonomics and design, psychology and sociology through to economics and politics. The reputation of the universities will enable them to attract the very best students to this research area.The DTC will begin with a 1 year joint MRes programme followed by a 3 year PhD programme including a placement abroad and the opportunity for each DTC student to employ an undergraduate intern to assist them. Students will be trained in communication methods and alternative forms of public engagement. They will thus understand the energy challenges faced by the UK, appreciate the international energy landscape, develop people-management and communication skills, and so acquire the competence to make a tangible impact. An annual colloquium will be the focal point of the DTC year acting as a show-case and major mechanism for connection to the wider stakeholder community.The DTC will be led by internationally eminent academics (Prof Robert Lowe, Director, and Prof Kevin J Lomas, Deputy Director), together they have over 50 years of experience in this sector. They will be supported by a management structure headed by an Advisory Board chaired by Pascal Terrien, Director of the European Centre and Laboratories for Energy Efficiency Research and responsible for the Demand Reduction programme of the UK Energy Technology Institute. This will help secure the international, industrial and UK research linkages of the DTC.Students will receive a stipend that is competitive with other DTCs in the energy arena and, for work in certain areas, further enhancement from industrial sponsors. They will have a personal annual research allowance, an excellent research environment and access to resources. Both Universities are committed to energy research at the highest level, and each has invested over 3.2M in academic appointments, infrastructure development and other support, specifically to the energy demand reduction area. Each university will match the EPSRC funded studentships one-for-one, with funding from other sources. This DTC will therefore train at least 100 students over its 8 year life.
- Project . 2014 - 2024Funder: UKRI Project Code: EP/L016362/1Funder Contribution: 3,527,890 GBPPartners: UQ, Clean Coal Limited, UNIVERSITY OF NORTH DAKOTA, ZJOU, Pusan National University, Caterpillar UK Ltd, SIEMENS PLC, Innospec Environmental Ltd, HSL, University of the Witwatersrand...
The motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.
- Project . 2017 - 2023Funder: UKRI Project Code: EP/P031277/1Funder Contribution: 692,318 GBPPartners: University of Liverpool, DLR, NRC
The vision for this research is to develop a novel toolset for flight simulation fidelity enhancement. This represents a step-change in simulator qualification, is well-timed making a significant contribution to the UoL initiated NATO STO AVT-296-RTG activity and will have an immediate impact through engagement with Industry partners. High fidelity modelling and simulation are prerequisites for ensuring confidence in decision making during aircraft design and development, including performance and handling qualities estimation, control law development, aircraft dynamic loads analysis, and the creation of a realistic piloted simulation environment. The ability to evaluate/optimise concepts with high confidence and stimulate realistic pilot behaviour are the kernels of quality flight simulation, in which pilots can train to operate aircraft proficiently and safely and industry can design with lower risk. Regulatory standards such as CS-FSTD(H) and FAA AC120-63 describe the certification criteria and procedures for rotorcraft flight training simulators. These documents detail the component fidelity required to achieve "fitness for purpose", with criteria based on "tolerances", defined as acceptable differences between simulation and flight, typically +/- 10% for the flight model. However, these have not been updated for several decades, while on the military side, the related practices in NATO nations are not harmonised and have often been developed for specific applications. Methods to update the models for improved fidelity are mostly ad-hoc and, without a strong scientific foundation, are often not physics-based. This research will provide a framework for such harmonisation removing the barriers to adopting physics-based flight modelling and will create new, more informed, standards. In this research two aspects of fidelity will be tackled, predictive fidelity (the metrics and tolerances in the standards) and perceptual fidelity (pilot opinion). The predictive fidelity aspect of the research will use System Identification techniques to provide a systematic framework for 'enhancing' a physics-based simulation model. The perceptual fidelity research will develop a rational, novel process for task-specific motion tuning together with a robust methodology for capturing pilots' subjective assessment of the overall fidelity of a simulator. Extensive use will be made of flight simulation and real-world flight tests throughout this project in both the predictive and perceptual fidelity research.
- Project . 2012 - 2015Funder: UKRI Project Code: EP/J008303/1Funder Contribution: 503,961 GBPPartners: University of Birmingham, Petrobank Energy and Resources Ltd
Extensive unexploited resources of heavy oil and bitumen exist, for example in Canada and Venezuela, as well as heavier deposits under the North Sea UK, which could potentially be utilized as the production of conventional light crude declines. Heavy oil and bitumen are more difficult to recover than conventional crude, requiring mining or specialized in-situ recovery techniques followed by upgrading to make them suitable for use as a fuel. Toe to heel air injection (THAITM) is an in-situ combustion and upgrading process in which air is injected to a horizontal well to feed combustion of a small fraction of the oil (up to 15 %). The heat generated causes the oil to flow along the well, where thermal upgrading reactions occur, leading to upgrading of the oil (by 4-6 API). CAPRI is a catalytic add-on to THAI in which catalyst is packed around the well to effect further catalytic upgrading reactions, such as hydrotreatment, however previous studies showed that the catalyst lifetime and process effectiveness are limited by coke deposition upon the catalyst. Additionally the costs and challenges of packing the well with pelleted catalyst prior to starting up also make the CAPRI process less economically attractive. The current proposal seeks to develop cheap, effective nanoparticulate catalysts which could be conveyed into the well by air or as slurry during operation, thereby avoiding the requirement for packing the well with catalyst prior to start up and to reduce the amount of deactivation and bed blockage that occurs by coke deposition upon pelleted catalysts. Initially, readily available iron oxide nanoparticles will be tested as a base-case. Nanoparticulate catalysts will also be prepared by supporting the metal upon bacteria, using a method in which metal containing solution is reduced in the presence of a bacterial culture, followed by centrifuge and drying which kills the live bacteria. The method has the advantages of being able to utilize scrap metal solutions and thus facilitate recycling of metals from waste sources, and it may be tuned to engineer nanoparticles of desired size and properties (e.g. crystal structures). Here we seek to develop, test and scale up the production of biogenic Fe catalysts for the upgrading of oil in the THAI process. Furthermore, waste road dusts contain deposits of catalytic metals from the exhaust of vehicular catalytic converters and these will be converted into cheap mixed metal catalysts by economically proven biohydrometallurgical methods for testing in the THAI process. Key to the effectiveness of utilizing nanoparticle catalysts will be the ability to contact them with oil in the mobile oil zone and flame front of the well, where the reaction is taking place. Studies of the rock void structure will be carried out using techniques such as X-Ray microtomography. Monte Carlo and Lattice Boltzmann simulations will be used to study the pneumatic conveying of particles into the reservoir and to study penetration and distribution of particles within the void space of the rocks. Conveying of slurry catalysts and process performance will be modeled using STARS reservoir simulation software. Evaluation of the different catalysts will be performed experimentally under real conditions using a rig developed under a previous project. The effect of variables such as gas:oil ratio, temperature, pressure and gas composition will be studied experimentally, in order to select the best catalyst and understand the conditions required for maximum upgrading. The experiments will also indicate whether catalyst deactivation occurs during use and enable conditions to be tuned to avoid deactivation.
- Project . 2009 - 2018Funder: UKRI Project Code: EP/G036950/1Funder Contribution: 6,371,160 GBPPartners: NNL, Firth Rixson Limited, BP British Petroleum, MEL Chemicals, TIMET UK LIMITED, WESTINGHOUSE ELECTRIC COMPANY UK LIMITED, University of Sheffield, Defence Science & Tech Lab DSTL, Tata Steel (United Kingdom), Cummins Turbo Technologies (United Kingdom)...
This is an application for a Doctoral Training Centre (DTC) from the Universities of Sheffield and Manchester in Advanced Metallic Systems which will be directed by Prof Panos Tsakiropoulos and Prof Phil Prangnell. The proposed DTC is in response to recent reviews by the EPSRC and government/industrial bodies which have indentified the serious impact of an increasing shortage of personnel, with Doctorate level training in metallic materials, on the global competitiveness of the UK's manufacturing and defence capability. Furthermore, future applications of materials are increasingly being seen as systems that incorporate several material classes and engineered surfaces into single components, to increase performance.The primary goal of the DTC is to address these issues head on by supplying the next generation of metallics research specialists desperately needed by UK plc. We plan to attract talented students from a diverse range of physical science and engineering backgrounds and involve them with highly motivated academic staff in a variety of innovative teaching and industrial-based research activities. The programme aims to prepare graduates for global challenges in competitiveness, through an enhanced PhD programme that will:1. Challenge students and promote independent problem solving and interdiscpilnarity,2. Expose them to industrial innovation, exciting new science and the international research community, 3. Increase their fundamental skills, and broaden them as individuals in preparation for future management and leadership roles.The DTC will be aligned with major multidisciplinary research centres and with the strong involvement of NAMTEC (the National Metals Technology Centre) and over twenty companies across many sectors. Learning will be up to date and industrially relevant, as well as benefitting from access to 30M of state-of-the art research facilities.Research projects will be targeted at high value UK strategic technology sectors, such as aerospace, automotive, power generation, renewables, and defence and aim to:1. Provide a multidisciplinary approach to the whole product life cycle; from raw material, to semi finished products to forming, joining, surface engineering/coating, in service performance and recycling via the wide skill base of the combined academic team and industrial collaborators.2. Improve the basic understanding of how nano-, micro- and meso-scale physical processes control material microstructures and thereby properties, in order to radically improve industrial processes, and advance techniques of modelling and process simulation.3. Develop new innovative processes and processing routes, i.e. disruptive or transformative technologies.4. Address challenges in energy by the development of advanced metallic solutions and manufacturing technologies for nuclear power, reduced CO2 emissions, and renewable energy. 5. Study issues and develop techniques for interfacing metallic materials into advanced hybrid structures with polymers, laminates, foams and composites etc. 6. Develop novel coatings and surface treatments to protect new light alloys and hybrid structures, in hostile environments, reduce environmental impact of chemical treatments and add value and increase functionality. 7. Reduce environmental impact through reductions in process energy costs and concurrently develop new materials that address the environmental challenges in weight saving and recyclability technologies. This we believe will produce PhD graduates with a superior skills base enabling problem solving and leadership expertise well beyond a conventional PhD project, i.e. a DTC with a structured programme and stimulating methods of engagement, will produce internationally competitive doctoral graduates that can engage with today's diverse metallurgical issues and contribute to the development of a high level knowledge-based UK manufacturing sector.
- Project . 2022 - 2022Funder: UKRI Project Code: EP/V000683/1Funder Contribution: 42,298 GBPPartners: University of Connecticut, McGill University, University of York
A central goal of this Overseas Travel Grant proposal is the establishment of a network of leading researchers with expertise in bone and tooth formation who share the believe that a comprehensive understanding of the nanoscale organization of both mineral and organic phase is at the heart of the development of new approaches for medical treatments. The proposed methodology is making use of the advancement of high-resolution electron imaging and spectroscopy to gain insights into the 3D structure and composition on the nanoscale. This approach is of great importance for a full understanding of the mechanisms behind structure formation and potential failure mechanisms in bones and teeth. In a recent publication (Reznikov et al., Science 2018) we were able to identify 12 levels of organisation in bone from the nano- to the macroscopic scale with a self-similar organisation pattern emerging across the different length-scales. These findings indicate the importance to understand the structure of mineralised tissue on the nanoscale. Based on this work I aim to explore the application of nanoscale imaging using advanced electron microscopy and spectroscopy to mineralised tissue such as bone cells and teeth. In both cases it is highly exciting to gain a full image of the mineral/organic assembly in healthy and disease affected tissues. The complex interplay between the mineral and the organic phases in bones and teeth appears to strongly affect the properties of the resulting biomineral with significant effects of disruptions on the nanoscale due to mineralisation affecting diseases (e.g. osteogenesis imperfecta or amelogenesis imperfecta, osteoporosis, arthritis). Hence, this work will provide a platform for future collaboration with leading life scientists and clinicians and will enable to link the high-resolution information gained by the chosen approaches with diagnostic observations. Both hosts at McGill University in Montreal and University of Connecticut in Hartford provide ideal conditions for both training and research since they have an excellent international reputation on health related materials research and provide access to an outstanding set of experimental techniques to achieve the goals of this proposal.
- Project . 2009 - 2014Funder: UKRI Project Code: EP/H009817/1Funder Contribution: 608,548 GBPPartners: McMaster University, QinetiQ Ltd, University of Salford
The global semiconductor market has a value of around $1trillion, over 90% of which is silicon based. In many senses silicon has driven the growth in the world economy for the last 40 years and has had an unparalleled cultural impact. Given the current level of commitment to silicon fabrication and its integration with other systems in terms of intellectual investment and foundry cost this is unlikely to change for the foreseeable future. Silicon is used in almost all electronic circuitry. However, there is one area of electronics that, at the moment, silicon cannnot be used to fill; that is in the emission of light. Silicon cannot normally emit light, but nearly all telecommunications and internet data transfer is currently done using light transmitted down fibre optics. So in everyones home signals are encoded by silicon and transmitted down wires to a station where other (expensive) components combine these signals and send light down fibres. If cheap silicon light emitters were available, the fibre optics could be brought into everyones homes and the data rate into and out of our homes would increase enormously. Also the connection between chips on circuit boards and even within chips could be performed using light instead of electricity. The applicants intend to form a consortium in the UK and to collaborate with international research groups to make silicon emit light using tiny clumps of silicon, called nanocrystals;. These nanocrystals can emit light in the visible and can be made to emit in the infrared by adding erbium atoms to them. A number of techniques available in Manchester, London and Guildford will be applied to such silicon chips to understand the light emission and to try to make silicon chips that emit light when electricity is passed through them. This will create a versatile silicon optical platform with applications in telecommunications, solar energy and secure communications. This technology would be commercialised by the applicants using a high tech start-up commpany.
- Project . 2013 - 2016Funder: UKRI Project Code: EP/K008781/1Funder Contribution: 347,135 GBPPartners: NRCan, SolarMetrics, STFC - Laboratories, University of Leicester
Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres. However there is a lack of ground infrastructure in the Arctic to support communications via the standard VHF links (and over the Arctic Ocean such links are impossible) and communication via geostationary satellites is not possible above about 82 degrees latitude because of the curvature of the Earth. Thus for the high latitude flights it is necessary to use high frequency (HF) radio for communication. HF radio relies on reflections from the ionosphere to achieve long distance communication round the curve of the Earth. Unfortunately the high latitude ionosphere is affected by space weather disturbances that can disrupt communications. These disturbances originate with events on the Sun such as solar flares and coronal mass ejections that send out particles that are guided by the Earth's magnetic field into the regions around the poles. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. Often, the necessity to land and refuel for these longer routes further increases the fuel consumption. The work described in this proposal cannot prevent the space weather disturbances and their effects on radio communication, but by developing a detailed understanding of the phenomena and using this to provide space weather information services the disruption to flight operations can be minimised. The occurrence of ionospheric disturbances and disruption of radio communication follows the 11-year cycle in solar activity. During the last peak in solar activity a number of events caused disruption of trans-Atlantic air routes. Disruptions to radio communications in recent years have been less frequent as we were at the low phase of the solar cycle. However, in the next few years there will be an upswing in solar activity that will produce a consequent increase in radio communications problems. The increased use of trans-polar routes and the requirement to handle greater traffic density on trans-Atlantic routes both mean that maintaining reliable high latitude communications will be even more important in the future.
144 Projects, page 1 of 15
Loading
- Project . 2020 - 2022Funder: UKRI Project Code: EP/V043811/1Funder Contribution: 497,214 GBPPartners: University of Toronto, University of Liverpool
Coronaviruses are transmitted from an infectious individual through large respiratory droplets generated by coughing, sneezing or speaking. These infectious droplets are then transmitted to the mucosal surfaces of a recipient through inhalation of the aerosol or by contact with contaminated fomites such as surfaces or other objects. In healthcare settings, personal protective equipment (PPE) plays a crucial role in interrupting the transmission of highly communicable diseases such as COVID19 from patients to healthcare workers (HCWs). However, research has shown that PPE can also act as a fomite during the donning and doffing process as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can survive on these surfaces for up to three days. This creates a need for more effective PPE materials that can provide antiviral protection. In this proposal we aim to develop a dual action antiviral/antifouling coating to lower the risk of transmission of the SARS-CoV-2 to HCWs from COVID19 patients. This project will deliver antiviral/antifouling coatings that can be readily applied to PPE surfaces such as faceshields that are likely to encounter a high level of viral load and would be of great benefit to the health of clinical staff. Furthermore, this project has embedded into its planning a rapid pathway for optimisation, translation, and upscaling of manufacture to deliver a low-cost technology within a short timescale.
- Project . 2019 - 2027Funder: UKRI Project Code: EP/S023836/1Funder Contribution: 5,530,580 GBPPartners: University of Cambridge, Knowledge Transfer Network Limited, Huazhong University of Sci and Tech, NTU, UoC, Offshore Renewable Energy Catapult, AVID Vehicles Ltd, Northumbria University, Scottish Power Energy Networks Holdings Limited, Enocell Ltd...
The EPSRC Centre for Doctoral Training in Renewable Energy Northeast Universities (ReNU) is driven by industry and market needs, which indicate unprecedented growth in renewable and distributed energy to 2050. This growth is underpinned by global demand for electricity which will outstrip growth in demand for other sources by more than two to one (The drivers of global energy demand growth to 2050, 2016, McKinsey). A significant part of this demand will arise from vast numbers of distributed, but interconnected devices (estimated to reach 40 billion by 2024) serving sectors such as healthcare (for ageing populations) and personal transport (for reduced carbon dioxide emission). The distinctive remit of ReNU therefore is to focus on materials innovations for small-to-medium scale energy conversion and storage technologies that are sustainable and highly scalable. ReNU will be delivered by Northumbria, Newcastle and Durham Universities, whose world-leading expertise and excellent links with industry in this area have been recognised by the recent award of the North East Centre for Energy Materials (NECEM, award number: EP/R021503/1). This research-focused programme will be highly complementary to ReNU which is a training-focused programme. A key strength of the ReNU consortium is the breadth of expertise across the energy sector, including: thin film and new materials; direct solar energy conversion; turbines for wind, wave and tidal energy; piezoelectric and thermoelectric devices; water splitting; CO2 valorisation; batteries and fuel cells. Working closely with a balanced portfolio of 36 partners that includes multinational companies, small and medium size enterprises and local Government organisations, the ReNU team has designed a compelling doctoral training programme which aims to engender entrepreneurial skills which will drive UK regional and national productivity in the area of Clean Growth, one of four Grand Challenges identified in the UK Government's recent Industrial Strategy. The same group of partners will also provide significant input to the ReNU in the form of industrial supervision, training for doctoral candidates and supervisors, and access to facilities and equipment. Success in renewable energy and sustainable distributed energy fundamentally requires a whole systems approach as well as understanding of political, social and technical contexts. ReNU's doctoral training is thus naturally suited to a cohort approach in which cross-fertilisation of knowledge and ideas is necessary and embedded. The training programme also aims to address broader challenges facing wider society including unconscious bias training and outreach to address diversity issues in science, technology, engineering and mathematics subjects and industries. Furthermore, external professional accreditation will be sought for ReNU from the Institute of Physics, Royal Society of Chemistry and Institute of Engineering Technology, thus providing a starting point from which doctoral graduates will work towards "Chartered" status. The combination of an industry-driven doctoral training programme to meet identifiable market needs, strong industrial commitment through the provision of training, facilities and supervision, an established platform of research excellence in energy materials between the institutions and unique training opportunities that include internationalisation and professional accreditation, creates a transformative programme to drive forward UK innovation in renewable and sustainable distributed energy.
- Project . 2009 - 2018Funder: UKRI Project Code: EP/H009612/1Funder Contribution: 5,814,410 GBPPartners: Purdue University West Lafayette, Dalhousie University, OSU-OKC, University of California, Berkeley, University of London, Lighting Education Trust, LBL, KU, Waseda University, Helsinki University of Technology...
Reducing carbon emissions and securing energy supplies are crucial international goals to which energy demand reduction must make a major contribution. On a national level, demand reduction, deployment of new and renewable energy technologies, and decarbonisation of the energy supply are essential if the UK is to meet its legally binding carbon reduction targets. As a result, this area is an important theme within the EPSRC's strategic plan, but one that suffers from historical underinvestment and a serious shortage of appropriately skilled researchers. Major energy demand reductions are required within the working lifetime of Doctoral Training Centre (DTC) graduates, i.e. by 2050. Students will thus have to be capable of identifying and undertaking research that will have an impact within their 35 year post-doctoral career. The challenges will be exacerbated as our population ages, as climate change advances and as fuel prices rise: successful demand reduction requires both detailed technical knowledge and multi-disciplinary skills. The DTC will therefore span the interfaces between traditional disciplines to develop a training programme that teaches the context and process-bound problems of technology deployment, along with the communication and leadership skills needed to initiate real change within the tight time scale required. It will be jointly operated by University College London (UCL) and Loughborough University (LU); two world-class centres of energy research. Through the cross-faculty Energy Institute at UCL and Sustainability Research School at LU, over 80 academics have been identified who are able and willing to supervise DTC students. These experts span the full range of necessary disciplines from science and engineering to ergonomics and design, psychology and sociology through to economics and politics. The reputation of the universities will enable them to attract the very best students to this research area.The DTC will begin with a 1 year joint MRes programme followed by a 3 year PhD programme including a placement abroad and the opportunity for each DTC student to employ an undergraduate intern to assist them. Students will be trained in communication methods and alternative forms of public engagement. They will thus understand the energy challenges faced by the UK, appreciate the international energy landscape, develop people-management and communication skills, and so acquire the competence to make a tangible impact. An annual colloquium will be the focal point of the DTC year acting as a show-case and major mechanism for connection to the wider stakeholder community.The DTC will be led by internationally eminent academics (Prof Robert Lowe, Director, and Prof Kevin J Lomas, Deputy Director), together they have over 50 years of experience in this sector. They will be supported by a management structure headed by an Advisory Board chaired by Pascal Terrien, Director of the European Centre and Laboratories for Energy Efficiency Research and responsible for the Demand Reduction programme of the UK Energy Technology Institute. This will help secure the international, industrial and UK research linkages of the DTC.Students will receive a stipend that is competitive with other DTCs in the energy arena and, for work in certain areas, further enhancement from industrial sponsors. They will have a personal annual research allowance, an excellent research environment and access to resources. Both Universities are committed to energy research at the highest level, and each has invested over 3.2M in academic appointments, infrastructure development and other support, specifically to the energy demand reduction area. Each university will match the EPSRC funded studentships one-for-one, with funding from other sources. This DTC will therefore train at least 100 students over its 8 year life.
- Project . 2014 - 2024Funder: UKRI Project Code: EP/L016362/1Funder Contribution: 3,527,890 GBPPartners: UQ, Clean Coal Limited, UNIVERSITY OF NORTH DAKOTA, ZJOU, Pusan National University, Caterpillar UK Ltd, SIEMENS PLC, Innospec Environmental Ltd, HSL, University of the Witwatersrand...
The motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.
- Project . 2017 - 2023Funder: UKRI Project Code: EP/P031277/1Funder Contribution: 692,318 GBPPartners: University of Liverpool, DLR, NRC
The vision for this research is to develop a novel toolset for flight simulation fidelity enhancement. This represents a step-change in simulator qualification, is well-timed making a significant contribution to the UoL initiated NATO STO AVT-296-RTG activity and will have an immediate impact through engagement with Industry partners. High fidelity modelling and simulation are prerequisites for ensuring confidence in decision making during aircraft design and development, including performance and handling qualities estimation, control law development, aircraft dynamic loads analysis, and the creation of a realistic piloted simulation environment. The ability to evaluate/optimise concepts with high confidence and stimulate realistic pilot behaviour are the kernels of quality flight simulation, in which pilots can train to operate aircraft proficiently and safely and industry can design with lower risk. Regulatory standards such as CS-FSTD(H) and FAA AC120-63 describe the certification criteria and procedures for rotorcraft flight training simulators. These documents detail the component fidelity required to achieve "fitness for purpose", with criteria based on "tolerances", defined as acceptable differences between simulation and flight, typically +/- 10% for the flight model. However, these have not been updated for several decades, while on the military side, the related practices in NATO nations are not harmonised and have often been developed for specific applications. Methods to update the models for improved fidelity are mostly ad-hoc and, without a strong scientific foundation, are often not physics-based. This research will provide a framework for such harmonisation removing the barriers to adopting physics-based flight modelling and will create new, more informed, standards. In this research two aspects of fidelity will be tackled, predictive fidelity (the metrics and tolerances in the standards) and perceptual fidelity (pilot opinion). The predictive fidelity aspect of the research will use System Identification techniques to provide a systematic framework for 'enhancing' a physics-based simulation model. The perceptual fidelity research will develop a rational, novel process for task-specific motion tuning together with a robust methodology for capturing pilots' subjective assessment of the overall fidelity of a simulator. Extensive use will be made of flight simulation and real-world flight tests throughout this project in both the predictive and perceptual fidelity research.
- Project . 2012 - 2015Funder: UKRI Project Code: EP/J008303/1Funder Contribution: 503,961 GBPPartners: University of Birmingham, Petrobank Energy and Resources Ltd
Extensive unexploited resources of heavy oil and bitumen exist, for example in Canada and Venezuela, as well as heavier deposits under the North Sea UK, which could potentially be utilized as the production of conventional light crude declines. Heavy oil and bitumen are more difficult to recover than conventional crude, requiring mining or specialized in-situ recovery techniques followed by upgrading to make them suitable for use as a fuel. Toe to heel air injection (THAITM) is an in-situ combustion and upgrading process in which air is injected to a horizontal well to feed combustion of a small fraction of the oil (up to 15 %). The heat generated causes the oil to flow along the well, where thermal upgrading reactions occur, leading to upgrading of the oil (by 4-6 API). CAPRI is a catalytic add-on to THAI in which catalyst is packed around the well to effect further catalytic upgrading reactions, such as hydrotreatment, however previous studies showed that the catalyst lifetime and process effectiveness are limited by coke deposition upon the catalyst. Additionally the costs and challenges of packing the well with pelleted catalyst prior to starting up also make the CAPRI process less economically attractive. The current proposal seeks to develop cheap, effective nanoparticulate catalysts which could be conveyed into the well by air or as slurry during operation, thereby avoiding the requirement for packing the well with catalyst prior to start up and to reduce the amount of deactivation and bed blockage that occurs by coke deposition upon pelleted catalysts. Initially, readily available iron oxide nanoparticles will be tested as a base-case. Nanoparticulate catalysts will also be prepared by supporting the metal upon bacteria, using a method in which metal containing solution is reduced in the presence of a bacterial culture, followed by centrifuge and drying which kills the live bacteria. The method has the advantages of being able to utilize scrap metal solutions and thus facilitate recycling of metals from waste sources, and it may be tuned to engineer nanoparticles of desired size and properties (e.g. crystal structures). Here we seek to develop, test and scale up the production of biogenic Fe catalysts for the upgrading of oil in the THAI process. Furthermore, waste road dusts contain deposits of catalytic metals from the exhaust of vehicular catalytic converters and these will be converted into cheap mixed metal catalysts by economically proven biohydrometallurgical methods for testing in the THAI process. Key to the effectiveness of utilizing nanoparticle catalysts will be the ability to contact them with oil in the mobile oil zone and flame front of the well, where the reaction is taking place. Studies of the rock void structure will be carried out using techniques such as X-Ray microtomography. Monte Carlo and Lattice Boltzmann simulations will be used to study the pneumatic conveying of particles into the reservoir and to study penetration and distribution of particles within the void space of the rocks. Conveying of slurry catalysts and process performance will be modeled using STARS reservoir simulation software. Evaluation of the different catalysts will be performed experimentally under real conditions using a rig developed under a previous project. The effect of variables such as gas:oil ratio, temperature, pressure and gas composition will be studied experimentally, in order to select the best catalyst and understand the conditions required for maximum upgrading. The experiments will also indicate whether catalyst deactivation occurs during use and enable conditions to be tuned to avoid deactivation.
- Project . 2009 - 2018Funder: UKRI Project Code: EP/G036950/1Funder Contribution: 6,371,160 GBPPartners: NNL, Firth Rixson Limited, BP British Petroleum, MEL Chemicals, TIMET UK LIMITED, WESTINGHOUSE ELECTRIC COMPANY UK LIMITED, University of Sheffield, Defence Science & Tech Lab DSTL, Tata Steel (United Kingdom), Cummins Turbo Technologies (United Kingdom)...
This is an application for a Doctoral Training Centre (DTC) from the Universities of Sheffield and Manchester in Advanced Metallic Systems which will be directed by Prof Panos Tsakiropoulos and Prof Phil Prangnell. The proposed DTC is in response to recent reviews by the EPSRC and government/industrial bodies which have indentified the serious impact of an increasing shortage of personnel, with Doctorate level training in metallic materials, on the global competitiveness of the UK's manufacturing and defence capability. Furthermore, future applications of materials are increasingly being seen as systems that incorporate several material classes and engineered surfaces into single components, to increase performance.The primary goal of the DTC is to address these issues head on by supplying the next generation of metallics research specialists desperately needed by UK plc. We plan to attract talented students from a diverse range of physical science and engineering backgrounds and involve them with highly motivated academic staff in a variety of innovative teaching and industrial-based research activities. The programme aims to prepare graduates for global challenges in competitiveness, through an enhanced PhD programme that will:1. Challenge students and promote independent problem solving and interdiscpilnarity,2. Expose them to industrial innovation, exciting new science and the international research community, 3. Increase their fundamental skills, and broaden them as individuals in preparation for future management and leadership roles.The DTC will be aligned with major multidisciplinary research centres and with the strong involvement of NAMTEC (the National Metals Technology Centre) and over twenty companies across many sectors. Learning will be up to date and industrially relevant, as well as benefitting from access to 30M of state-of-the art research facilities.Research projects will be targeted at high value UK strategic technology sectors, such as aerospace, automotive, power generation, renewables, and defence and aim to:1. Provide a multidisciplinary approach to the whole product life cycle; from raw material, to semi finished products to forming, joining, surface engineering/coating, in service performance and recycling via the wide skill base of the combined academic team and industrial collaborators.2. Improve the basic understanding of how nano-, micro- and meso-scale physical processes control material microstructures and thereby properties, in order to radically improve industrial processes, and advance techniques of modelling and process simulation.3. Develop new innovative processes and processing routes, i.e. disruptive or transformative technologies.4. Address challenges in energy by the development of advanced metallic solutions and manufacturing technologies for nuclear power, reduced CO2 emissions, and renewable energy. 5. Study issues and develop techniques for interfacing metallic materials into advanced hybrid structures with polymers, laminates, foams and composites etc. 6. Develop novel coatings and surface treatments to protect new light alloys and hybrid structures, in hostile environments, reduce environmental impact of chemical treatments and add value and increase functionality. 7. Reduce environmental impact through reductions in process energy costs and concurrently develop new materials that address the environmental challenges in weight saving and recyclability technologies. This we believe will produce PhD graduates with a superior skills base enabling problem solving and leadership expertise well beyond a conventional PhD project, i.e. a DTC with a structured programme and stimulating methods of engagement, will produce internationally competitive doctoral graduates that can engage with today's diverse metallurgical issues and contribute to the development of a high level knowledge-based UK manufacturing sector.
- Project . 2022 - 2022Funder: UKRI Project Code: EP/V000683/1Funder Contribution: 42,298 GBPPartners: University of Connecticut, McGill University, University of York
A central goal of this Overseas Travel Grant proposal is the establishment of a network of leading researchers with expertise in bone and tooth formation who share the believe that a comprehensive understanding of the nanoscale organization of both mineral and organic phase is at the heart of the development of new approaches for medical treatments. The proposed methodology is making use of the advancement of high-resolution electron imaging and spectroscopy to gain insights into the 3D structure and composition on the nanoscale. This approach is of great importance for a full understanding of the mechanisms behind structure formation and potential failure mechanisms in bones and teeth. In a recent publication (Reznikov et al., Science 2018) we were able to identify 12 levels of organisation in bone from the nano- to the macroscopic scale with a self-similar organisation pattern emerging across the different length-scales. These findings indicate the importance to understand the structure of mineralised tissue on the nanoscale. Based on this work I aim to explore the application of nanoscale imaging using advanced electron microscopy and spectroscopy to mineralised tissue such as bone cells and teeth. In both cases it is highly exciting to gain a full image of the mineral/organic assembly in healthy and disease affected tissues. The complex interplay between the mineral and the organic phases in bones and teeth appears to strongly affect the properties of the resulting biomineral with significant effects of disruptions on the nanoscale due to mineralisation affecting diseases (e.g. osteogenesis imperfecta or amelogenesis imperfecta, osteoporosis, arthritis). Hence, this work will provide a platform for future collaboration with leading life scientists and clinicians and will enable to link the high-resolution information gained by the chosen approaches with diagnostic observations. Both hosts at McGill University in Montreal and University of Connecticut in Hartford provide ideal conditions for both training and research since they have an excellent international reputation on health related materials research and provide access to an outstanding set of experimental techniques to achieve the goals of this proposal.
- Project . 2009 - 2014Funder: UKRI Project Code: EP/H009817/1Funder Contribution: 608,548 GBPPartners: McMaster University, QinetiQ Ltd, University of Salford
The global semiconductor market has a value of around $1trillion, over 90% of which is silicon based. In many senses silicon has driven the growth in the world economy for the last 40 years and has had an unparalleled cultural impact. Given the current level of commitment to silicon fabrication and its integration with other systems in terms of intellectual investment and foundry cost this is unlikely to change for the foreseeable future. Silicon is used in almost all electronic circuitry. However, there is one area of electronics that, at the moment, silicon cannnot be used to fill; that is in the emission of light. Silicon cannot normally emit light, but nearly all telecommunications and internet data transfer is currently done using light transmitted down fibre optics. So in everyones home signals are encoded by silicon and transmitted down wires to a station where other (expensive) components combine these signals and send light down fibres. If cheap silicon light emitters were available, the fibre optics could be brought into everyones homes and the data rate into and out of our homes would increase enormously. Also the connection between chips on circuit boards and even within chips could be performed using light instead of electricity. The applicants intend to form a consortium in the UK and to collaborate with international research groups to make silicon emit light using tiny clumps of silicon, called nanocrystals;. These nanocrystals can emit light in the visible and can be made to emit in the infrared by adding erbium atoms to them. A number of techniques available in Manchester, London and Guildford will be applied to such silicon chips to understand the light emission and to try to make silicon chips that emit light when electricity is passed through them. This will create a versatile silicon optical platform with applications in telecommunications, solar energy and secure communications. This technology would be commercialised by the applicants using a high tech start-up commpany.
- Project . 2013 - 2016Funder: UKRI Project Code: EP/K008781/1Funder Contribution: 347,135 GBPPartners: NRCan, SolarMetrics, STFC - Laboratories, University of Leicester
Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres. However there is a lack of ground infrastructure in the Arctic to support communications via the standard VHF links (and over the Arctic Ocean such links are impossible) and communication via geostationary satellites is not possible above about 82 degrees latitude because of the curvature of the Earth. Thus for the high latitude flights it is necessary to use high frequency (HF) radio for communication. HF radio relies on reflections from the ionosphere to achieve long distance communication round the curve of the Earth. Unfortunately the high latitude ionosphere is affected by space weather disturbances that can disrupt communications. These disturbances originate with events on the Sun such as solar flares and coronal mass ejections that send out particles that are guided by the Earth's magnetic field into the regions around the poles. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. Often, the necessity to land and refuel for these longer routes further increases the fuel consumption. The work described in this proposal cannot prevent the space weather disturbances and their effects on radio communication, but by developing a detailed understanding of the phenomena and using this to provide space weather information services the disruption to flight operations can be minimised. The occurrence of ionospheric disturbances and disruption of radio communication follows the 11-year cycle in solar activity. During the last peak in solar activity a number of events caused disruption of trans-Atlantic air routes. Disruptions to radio communications in recent years have been less frequent as we were at the low phase of the solar cycle. However, in the next few years there will be an upswing in solar activity that will produce a consequent increase in radio communications problems. The increased use of trans-polar routes and the requirement to handle greater traffic density on trans-Atlantic routes both mean that maintaining reliable high latitude communications will be even more important in the future.