Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
19 Projects

  • Canada
  • UK Research and Innovation
  • UKRI|EPSRC
  • 2009

10
arrow_drop_down
  • Funder: UKRI Project Code: EP/G036950/1
    Funder Contribution: 6,371,160 GBP

    This is an application for a Doctoral Training Centre (DTC) from the Universities of Sheffield and Manchester in Advanced Metallic Systems which will be directed by Prof Panos Tsakiropoulos and Prof Phil Prangnell. The proposed DTC is in response to recent reviews by the EPSRC and government/industrial bodies which have indentified the serious impact of an increasing shortage of personnel, with Doctorate level training in metallic materials, on the global competitiveness of the UK's manufacturing and defence capability. Furthermore, future applications of materials are increasingly being seen as systems that incorporate several material classes and engineered surfaces into single components, to increase performance.The primary goal of the DTC is to address these issues head on by supplying the next generation of metallics research specialists desperately needed by UK plc. We plan to attract talented students from a diverse range of physical science and engineering backgrounds and involve them with highly motivated academic staff in a variety of innovative teaching and industrial-based research activities. The programme aims to prepare graduates for global challenges in competitiveness, through an enhanced PhD programme that will:1. Challenge students and promote independent problem solving and interdiscpilnarity,2. Expose them to industrial innovation, exciting new science and the international research community, 3. Increase their fundamental skills, and broaden them as individuals in preparation for future management and leadership roles.The DTC will be aligned with major multidisciplinary research centres and with the strong involvement of NAMTEC (the National Metals Technology Centre) and over twenty companies across many sectors. Learning will be up to date and industrially relevant, as well as benefitting from access to 30M of state-of-the art research facilities.Research projects will be targeted at high value UK strategic technology sectors, such as aerospace, automotive, power generation, renewables, and defence and aim to:1. Provide a multidisciplinary approach to the whole product life cycle; from raw material, to semi finished products to forming, joining, surface engineering/coating, in service performance and recycling via the wide skill base of the combined academic team and industrial collaborators.2. Improve the basic understanding of how nano-, micro- and meso-scale physical processes control material microstructures and thereby properties, in order to radically improve industrial processes, and advance techniques of modelling and process simulation.3. Develop new innovative processes and processing routes, i.e. disruptive or transformative technologies.4. Address challenges in energy by the development of advanced metallic solutions and manufacturing technologies for nuclear power, reduced CO2 emissions, and renewable energy. 5. Study issues and develop techniques for interfacing metallic materials into advanced hybrid structures with polymers, laminates, foams and composites etc. 6. Develop novel coatings and surface treatments to protect new light alloys and hybrid structures, in hostile environments, reduce environmental impact of chemical treatments and add value and increase functionality. 7. Reduce environmental impact through reductions in process energy costs and concurrently develop new materials that address the environmental challenges in weight saving and recyclability technologies. This we believe will produce PhD graduates with a superior skills base enabling problem solving and leadership expertise well beyond a conventional PhD project, i.e. a DTC with a structured programme and stimulating methods of engagement, will produce internationally competitive doctoral graduates that can engage with today's diverse metallurgical issues and contribute to the development of a high level knowledge-based UK manufacturing sector.

    visibility54
    visibilityviews54
    downloaddownloads316
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/G022402/1
    Funder Contribution: 406,440 GBP

    There are clear drivers in the transport industry towards lower fuel consumption and CO2 emissions through the introduction of designs involving combinations of different material classes, such as steel, titanium, magnesium and aluminium alloys, metal sheet and castings, and laminates in more efficient hybrid structures. The future direction of the transport industry will thus undoubtedly be based on multi-material solutions. This shift in design philosophy is already past the embryonic stage, with the introduction of aluminium front end steel body shells (BMW 5 series) and the integration of aluminium sheet and magnesium high pressure die castings in aluminium car bodies (e.g. Jaguar XK).Such material combinations are currently joined by fasteners, which are expensive and inefficient, as they are very difficult to weld by conventional technologies like electrical resistance spot, MIG arc, and laser welding. New advanced solid state friction based welding techniques can potentially overcome many of the issues associated with joining dissimilar material combinations, as they lower the overall heat input and do not melt the materials. This greatly reduces the tendency for poor bond strengths, due to interfacial reaction and solidification cracking, as well as damage to thermally sensitive materials like laminates and aluminium alloys used in automotive bodies, which are designed to harden during paint baking. Friction joining techniques are also far more efficient, resulting in energy savings of > 90% relative to resistance spot and laser welding, are more robust processes, and can be readily used in combination with adhesive bonding.This project, in close collaboration with industry (e.g. Jaguar - Land Rover, Airbus, Corus, Meridian, Novelis, TWI, Sonobond) will investigate materials and process issues associated with optimising friction joining of hybrid, more mass efficient structures, focusing on; Friction Stir, Friction Stir Spot, and High Power Ultrasonic Spot welding. The work will be underpinned by novel approaches to developing models of these exciting new processes and detailed analysis and modelling of key material interactions, such as interfacial bonding / reaction and weld microstructure formation.

    visibility0
    visibilityviews0
    downloaddownloads147
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/G015325/1
    Funder Contribution: 313,341 GBP

    The biological membrane is a highly organised structure. Many biologically active compounds interact with the biological membrane and modify its structure and organisation in a very selective manner. Phospholipids form the basic backbone structure of biological membranes. When phospholipid layers are adsorbed on a mercury drop electrode (HMDE) they form monolayers which have a very similar structure and properties to exactly half the phospholipid bilayer of a biological membrane. The reason for this is that the fluid phospholipid layer is directly compatible with the smooth liquid mercury surface. The great advantage of this system is that the structure of the adsorbed phospholipid layer can be very closely interrogated electrochemically since it is supported on a conducting surface. In this way interactions with biologically active compounds which modify the monolayer's structure can be sensed. The disadvantage is that Hg electrodes are fragile, toxic and have no applicability for field use in spite of the sensitivity of the system to biological membrane active species. Another disadvantage is that the Hg surface can only be imaged with extreme difficulty. This project takes the above proven sensing system and modifies it in the following way. A single and an array of platinum (Pt) microelectrode(s) are fabricated on a silicon wafer. On each microelectrode a minute amount of Hg is electrodeposited and on each Hg/Pt electrode a phospholipid monolayer is deposited. The stability of each phospholipid layer will be ensured through the edge effect of the electrode. We will use the silicon wafer array to carry out controlled phospholipid deposition experiments which are not possible on the HMDE. We shall also try out other methods of phospholipid deposition. The project will exploit the fact that the microelectrode array system with deposited phospholipid monolayers is accessible for imaging. AFM studies at Leeds have already been used to image temperature induced phase changes in mica supported phospholipid bilayers showing nucleation and growth processes. The AFM system is eminently suitable therefore to image the potential induced phase changes of the phospholipid monolayers on the individual chip based microelectrodes. It is important to do this because the occurrence of these phase transitions is very sensitive to the interaction of the phospholipid layer with biomembrane active species.In addition the mechanism of the phase changes which are fundamentally the same as those occurring in the electroporation of cells are of immense physical interest and a greater understanding of them can be gained through their imaging. We shall also attempt to image the interaction of the layer with membrane active peptides at different potential values. The AFM system will be developed to image the conformation and state of aggregation of adsorbed anti-microbial peptides on the monolayer in particular as a function of potential change. When biomembrane active compounds interact with phospholipid layers on Hg they alter the fluidity and organisation of the layers. This in turn affects the characteristics of the potential induced phase transitions. This can be very effectively monitored electrochemically by rapid cyclic voltammetry (RCV). Interferences to the analysis will be characterised. Pattern recognition techniques will be developed to characterise the electrochemical response to individual active compounds.The project will deliver a sensor on a silicon wafer which has the potential to detect low levels of biomembrane active organic compounds in natural waters and to assess the biomembrane activity of pharmaceutical compounds. The proven feasibility of cleaning the Hg/Pt electrode and renewing the sensing phospholipid layer will facilitate the incorporation of the device into a flow through system with a full automation and programmable operation.

    more_vert
  • Funder: UKRI Project Code: EP/H009817/1
    Funder Contribution: 608,548 GBP

    The global semiconductor market has a value of around $1trillion, over 90% of which is silicon based. In many senses silicon has driven the growth in the world economy for the last 40 years and has had an unparalleled cultural impact. Given the current level of commitment to silicon fabrication and its integration with other systems in terms of intellectual investment and foundry cost this is unlikely to change for the foreseeable future. Silicon is used in almost all electronic circuitry. However, there is one area of electronics that, at the moment, silicon cannnot be used to fill; that is in the emission of light. Silicon cannot normally emit light, but nearly all telecommunications and internet data transfer is currently done using light transmitted down fibre optics. So in everyones home signals are encoded by silicon and transmitted down wires to a station where other (expensive) components combine these signals and send light down fibres. If cheap silicon light emitters were available, the fibre optics could be brought into everyones homes and the data rate into and out of our homes would increase enormously. Also the connection between chips on circuit boards and even within chips could be performed using light instead of electricity. The applicants intend to form a consortium in the UK and to collaborate with international research groups to make silicon emit light using tiny clumps of silicon, called nanocrystals;. These nanocrystals can emit light in the visible and can be made to emit in the infrared by adding erbium atoms to them. A number of techniques available in Manchester, London and Guildford will be applied to such silicon chips to understand the light emission and to try to make silicon chips that emit light when electricity is passed through them. This will create a versatile silicon optical platform with applications in telecommunications, solar energy and secure communications. This technology would be commercialised by the applicants using a high tech start-up commpany.

    more_vert
  • Funder: UKRI Project Code: EP/H009612/1
    Funder Contribution: 5,814,410 GBP

    Reducing carbon emissions and securing energy supplies are crucial international goals to which energy demand reduction must make a major contribution. On a national level, demand reduction, deployment of new and renewable energy technologies, and decarbonisation of the energy supply are essential if the UK is to meet its legally binding carbon reduction targets. As a result, this area is an important theme within the EPSRC's strategic plan, but one that suffers from historical underinvestment and a serious shortage of appropriately skilled researchers. Major energy demand reductions are required within the working lifetime of Doctoral Training Centre (DTC) graduates, i.e. by 2050. Students will thus have to be capable of identifying and undertaking research that will have an impact within their 35 year post-doctoral career. The challenges will be exacerbated as our population ages, as climate change advances and as fuel prices rise: successful demand reduction requires both detailed technical knowledge and multi-disciplinary skills. The DTC will therefore span the interfaces between traditional disciplines to develop a training programme that teaches the context and process-bound problems of technology deployment, along with the communication and leadership skills needed to initiate real change within the tight time scale required. It will be jointly operated by University College London (UCL) and Loughborough University (LU); two world-class centres of energy research. Through the cross-faculty Energy Institute at UCL and Sustainability Research School at LU, over 80 academics have been identified who are able and willing to supervise DTC students. These experts span the full range of necessary disciplines from science and engineering to ergonomics and design, psychology and sociology through to economics and politics. The reputation of the universities will enable them to attract the very best students to this research area.The DTC will begin with a 1 year joint MRes programme followed by a 3 year PhD programme including a placement abroad and the opportunity for each DTC student to employ an undergraduate intern to assist them. Students will be trained in communication methods and alternative forms of public engagement. They will thus understand the energy challenges faced by the UK, appreciate the international energy landscape, develop people-management and communication skills, and so acquire the competence to make a tangible impact. An annual colloquium will be the focal point of the DTC year acting as a show-case and major mechanism for connection to the wider stakeholder community.The DTC will be led by internationally eminent academics (Prof Robert Lowe, Director, and Prof Kevin J Lomas, Deputy Director), together they have over 50 years of experience in this sector. They will be supported by a management structure headed by an Advisory Board chaired by Pascal Terrien, Director of the European Centre and Laboratories for Energy Efficiency Research and responsible for the Demand Reduction programme of the UK Energy Technology Institute. This will help secure the international, industrial and UK research linkages of the DTC.Students will receive a stipend that is competitive with other DTCs in the energy arena and, for work in certain areas, further enhancement from industrial sponsors. They will have a personal annual research allowance, an excellent research environment and access to resources. Both Universities are committed to energy research at the highest level, and each has invested over 3.2M in academic appointments, infrastructure development and other support, specifically to the energy demand reduction area. Each university will match the EPSRC funded studentships one-for-one, with funding from other sources. This DTC will therefore train at least 100 students over its 8 year life.

    visibility30
    visibilityviews30
    downloaddownloads721
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/G036608/1
    Funder Contribution: 6,550,560 GBP

    There are major challenges inherent in meeting the goals of the UK national energy policy, including, climate change mitigation and adaption, security of supply, asset renewal, supply infrastructure etc. Additionally, there is a recognized shortage of high quality scientists and engineers with energy-related training to tackle these challenges, and to support the UK's future research and development and innovation performance as evidenced by several recent reports;Doosan Babcock (Energy Brief, Issue 3, June 2007, Doosan Babcock); UK Energy Institute (conducted by Deloitte/Norman Broadbent, 'Skills Needs in the Energy Industry' 2008); The Institution of Engineering and Technology, (evidence to the House of Commons, Select Committee on Innovation, Universities, Science and Skills Fifth Report (19th June 2008); The Energy Research Partnership (Investigation into High-level Skills Shortages in the Energy Sector, March 2007). Here we present a proposal to host a Doctoral Training Centre (DTC) focusing on the development of technologies for a low carbon future, providing a challenging, exciting and inspiring research environment for the development of tomorrow's research leaders. This DTC will bring together a cohort of postgraduate research students and their supervisors to develop innovative technologies for a low carbon future based around the key interlinking themes: [1] Low Carbon Enabling Technologies; [2] Transport & Energy; [3] Carbon Storage, underpinned by [4] Climate Change & Energy Systems Research. Thereby each student will develop high level expertise in a particular topic but with excitement of working in a multidisciplinary environment. The DTC will be integrated within a campus wide Interdisciplinary Institute which coordinates energy research to tackle the 'Grand Challenge' of developing technologies for a low carbon future, our DTC students therefore working in a transformational research environment. The DTC will be housed in a NEW 14.8M Energy Research Building and administered by the established (2005) cross campus Earth, Energy & Environment (EEE) University Interdisciplinary Institute

    visibility203
    visibilityviews203
    downloaddownloads3,072
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/H003177/1
    Funder Contribution: 994,556 GBP

    Attoseconds (10^(-18) sec) are the natural time-scale for multi-electron effects during complete ionization and break-up of multi-electron atoms and molecules. The recent advances in generating ultrashort laser pulses raise the possibility to investigate atomic, molecular, and nuclear physics at this new time-scale, bringing a revolution in our microscopic knowledge and understanding of matter. Two fascinating and complementary challenges of Attoscience are to identify the physical mechanisms underlying the correlated multi-electron dynamics--of fundamental interest to, for instance, molecular imaging--in atomic and molecular systems and to devise schemes to probe/control these mechanisms. This is the overall aim of the proposed research. Steering the electronic motion for manipulating small molecules will pave the way for modifying the structure of complex biomolecules, thus impacting such diverse fields as physics, chemistry, biology and material science. The problem consists of exploring the interaction of complex atoms and molecules driven by intense and ultrashort laser pulses. Given the state of the art in computational capabilities, solving this problem with three-dimensional (3-d) first-principle techniques, namely, quantum mechanical ones, is an immense task. Thus, classical/semiclassical techniques, which are much faster than quantum mechanical ones, will be instrumental in exploring the correlated electron dynamics in driven complex atomic and molecular systems. I recently developed, in the context of the driven double ionization of Helium, a 3-d classical method that addresses the full fragmentation of driven systems. The advantage of this technique is that it is much faster than quantum mechanical treatments and it accounts for the Coulomb singularity--the infinitely strong force an electron experiences when it is close to the atomic center. It is thus a step forward compared to previous classical studies which ignore the Coulomb singularity altogether. I propose to generalize this quasiclassical technique, and develop an efficient and sophisticated numerical tool for the treatmentof the full fragmentation of complex driven atomic and molecular systems.Using this 3-d quasiclassical technique, I will first address multi-electron effects in three electron atoms driven by strong laser pulses--a problem vastly unexplored. One of the main goals is to probe (time-resolve) the main mechanisms/paths the three electrons follow to escape during the fragmentation process when the atom is interacting with a very weak field (single photon absorption). I will do so using a circularly polarized infrared ultrashort laser pulse as an attosecond clock to map the information obtained from the observed spectra of the final fragments to the attosecond correlated electron dynamics. I will then proceed to explore the correlated electron dynamics in the double ionization of two- active or two-electron diatomic molecules with moving nuclei when driven by intense ultrashort laser pulses. This problem is at the forefront of Attoscience and is far from being theoretically well understood. Using pulses of different intensity I will be able to explore different ionization regimes and for each regime explore the different mechanisms that govern the two electron escape, the effect of the two atomic centers on the double ionization, and the interplay of processes that result in different final products. The vision is to generalize these studies to tackle driven triatomic molecules with moving nuclei--an unexplored problem--and study the break-up geometries and their dependence on the initial molecular state. Finally, combining my expertise on probing single photon processes and on multi-electron effects of strongly driven molecules, I will address time-resolving and controlling the electronic motion during the break-up of driven multi-center molecules using combinations of ultrashort laser pulses.

    more_vert
  • Funder: UKRI Project Code: EP/G00496X/1
    Funder Contribution: 527,372 GBP

    My research programme is the study of how relativistic effects can be exploited to improve quantum information tasks, a key topic of immense technological importance already today and more so for the next decades. The vantage point of these investigations is that the world is fundamentally both quantum and relativistic, and that these facts are immensely useful for the design of communication devices that are absolutely safe from eavesdropping, and of quantum computers that can quickly perform difficult computational tasks which overwhelm any classically imaginable computer. Indeed, impressive technological achievements and promises have already been derived from taking seriously solely the quantum aspects of matter: quantum cryptography and communication have become a technical reality in recent years, but the practical construction of a quantum computer still requires to understand better how to efficiently store, manipulate and read information, without prohibitively large disturbances from the environment. Throwing relativity into the equation fundamentally changes the entire game, as I could show in a series of research papers, one of which was featured in a generally accessible Science article highlighting my work (Cho, Science 2005). I propose to push this exciting line of theoretical research to the point where relativistic effects in quantum information theory can be exploited technologically.Far from yielding only quantitative corrections, relativity plays a dominant role in the qualitative behaviour of many physical systems used to implement quantum information tasks in the laboratory. The prototypical example is provided by any system involving light, be it for the transmission or manipulation of quantum information. There is no such thing as a non-relativistic approximation to light quanta, so-called photons, since these always travel at the speed of light. While relativistic quantum theory, commonly known as quantum field theory, is a very well studied subject in foundational particle physics, research in quantum information theory selectively focused almost exclusively on those aspects one can study without relativity. Thus both unexpected obstacles (such as a relativistic degradation of quantum entanglement) and unimagined possibilities for quantum information theory (such as improved quantum cryptography and hypersensitive quantum measurement devices) have gone unnoticed. The relevance of these insights, which together with co-workers, I afforded over the past few years, are evidenced by the amount of work by other researchers recognizing and building on my work. Indeed, the impact of my research extends beyond pure quantum information theory, and applications to foundational questions in cosmology and black hole physics have been found.The research I propose to complete during my Fellowship aims at providing comprehensive answers to foundational, theoretical and technological aspects of relativistic quantum information theory, exploiting and building on the intriguing results obtained so far. My overall aspiration and vision is to ultimately provide concrete solutions to key problems in the field of quantum information theory.

    more_vert
  • Funder: UKRI Project Code: EP/G034303/1
    Funder Contribution: 4,569,560 GBP

    Recently the media has been awash with reports on the downloading and sharing of music files, a crisis which strikes at the economic viability of the entire global music industry. This is a startling reminder of the security challenges posed, in both the civil and criminal domains, as we move relentlessly to a world in which all Information Technology is fully connected, facilitated by the development and rapid uptake of Web 2.0. This, and its successors, will radically transform society in a way unimaginable a decade ago. However, with the accrued benefits come major threats in terms of privacy, security of information and vulnerability to external attack. Threats range, in the criminal domain, from the petty criminal stealing credit card details, through trouble making hacktivists, who attack organisations to further political aims, to the sinister cyber-terrorists, who attack strategic targets in the same way that terrorists would bomb and destroy national infrastructure. At the heart of the CSIT project is the perennial challenge of making all of the IT solutions, of today and tomorrow, secure. CSIT will be a world-class Research and Innovation centre coupling major research breakthroughs in Secure Information Technology with exciting developments in innovation and commercialisation.Information Technology in the widest sense deals with the use of electronic computers and computer software to convert, store, analyze, transmit, and retrieve information. So, the IT field covers every aspect of data processing from the banking using one's home PC with its (increasingly wireless) broadband connection, through to the complex systems which control and manage the world's aviation, maritime and telecommunications systems. As anyone who has had a virus, worm, Trojan or spyware on their home PC can readily testify, security is an essential requirement for any IT systems in order to retain privacy, integrity and trust. When electronic sensor devices and CCTV cameras are networked and combined with computer processing, IT then becomes a power enabling tool in the field of physical infrastructure protection, which includes fire monitoring, asset tracking and intrusion detection. Thus while IT security itself is often a matter of defending against automated attack by viral programs, IT for asset protection is a tool to assist the human operator. The IT systems used for infrastructure systems must themselves be secure not least because personal biometric data is increasingly being rolled out as a part of the solution.IT systems are analysed into a stack of independent layers along lines defined in international standards. CSIT staff are world leaders in academic research in these layers, an attribute which is reflected in the four initial fields of academic research: data systems, networks, wireless and intelligent surveillance. However a key distinguishing feature of CSIT is the fact that it understands, because of its history, the necessity to ultimately take a the holistic, or systems engineering, perspective in order to research and develop the creation of complete secure IT systems, which undoubtedly are greater than the sum of their layers. The involvement of many industrial partners in CSIT bears witness to this.The driving goal for CSIT is to strategically position U.K. industry at the forefront of the field of secure IT because this field is a critical, emerging and rapidly growing sector with its wider benefits for the safety and security of society. Embedded within Queen's University, with its very successful record of industrial collaboration and spin-out company formation, CSIT therefore lends itself well to a strong business and academic partnership, creating a continuous flow of knowledge transfer opportunities, with realizable shorter term milestones for transfer of the research, coupled with exciting opportunities for major breakthroughs and ensuing commercial opportunities for UK industry.

    more_vert
  • Funder: UKRI Project Code: EP/G007217/1
    Funder Contribution: 1,565,450 GBP

    Achieving the carbon target for steel and aluminium requires an industry-wide transformation which will result in new business models and new metal flows. The proposal aims to identify credible scenarios for achieving the target, to specify the barriers to achieving them, and to define the economic and policy measures required to drive change. In parallel, the proposal aims to deliver basic technology research that will allow more options for a future materially efficient steel and aluminium economy.It is widely agreed that a cut of at least 60% in global greenhouse gas emissions will be required by 2050 to limit the adverse effects of climate change. Steel and aluminium are responsible for 8% of global energy related emissions. Industry efforts to date have focused on reducing energy in primary production, and recycling metal by melting and re-casting. However, demand for both steel and aluminium is forecast to double, recycling rates are already around 60-70% and the most optimistic projections for energy efficiency improvements deliver only 30% reduction per unit output of material. Efficiency improvements alone are not sufficient, but the 2050 target can be achieved if, in addition to existing measures, energy used in converting ingots to products is halved, the volume of metal used in each application is reduced, and a substantial fraction of metal is re-used without melting. In pursuing this strategy, this proposal is aligned with the EPSRC strategic theme on energy demand reduction.The need for clarity about the physical implications of responding to the carbon target has become a major priority in the metal producing and using industry. Without the work described in this proposal, it is not possible for the government, industry and the public to understand and negotiate the choices they must collectively make in order to meet the carbon target in this sector. Accordingly, this proposal comes with support of 2 million in committed effort from 20 global companies, all with operations in the UK. The business activities of the consortium span primary metal production, conventional recycling, equipment manufacture, road transport, construction, aerospace, packaging and knowledge transfer.The work of the fellowship will be split between business analysis and technology innovation themes. The business analysis theme will identify future scenarios, barriers and a roadmap for meeting the target. This work will include specific analysis of future metal flows, application of a global economic model and the analysis of policy measures. The technology innovation theme aims to optimize the requirements for metal use through novel manufacturing process design, to increase material and energy efficiency in forming and finishing, and to develop solid-state closed-loop recycling for metals. Both themes will be developed in collaboration with the consortium, and will also draw on an international scientific panel and a cross-disciplinary advisory panel in Cambridge.The work will lead to two major reports for wide distribution, direct dissemination into the partner companies, training courses, technology assessments and physical demonstrations of the technology innovations. These will include a demonstration for public engagement. The results of the work on steel and aluminium will be used to stimulate interest among business leaders in other sectors, and will form the basis for a longer term Centre for Low Carbon Materials Processing in Cambridge.The Leadership Fellowship offers a unique and timely opportunity to undertake the basic research required to drive a step-change in material efficiency, by demonstrating that a different flow of metal through the global economy is technically and economically possible, and by inspiring and informing those who can influence change.

    more_vert
Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
19 Projects
  • Funder: UKRI Project Code: EP/G036950/1
    Funder Contribution: 6,371,160 GBP

    This is an application for a Doctoral Training Centre (DTC) from the Universities of Sheffield and Manchester in Advanced Metallic Systems which will be directed by Prof Panos Tsakiropoulos and Prof Phil Prangnell. The proposed DTC is in response to recent reviews by the EPSRC and government/industrial bodies which have indentified the serious impact of an increasing shortage of personnel, with Doctorate level training in metallic materials, on the global competitiveness of the UK's manufacturing and defence capability. Furthermore, future applications of materials are increasingly being seen as systems that incorporate several material classes and engineered surfaces into single components, to increase performance.The primary goal of the DTC is to address these issues head on by supplying the next generation of metallics research specialists desperately needed by UK plc. We plan to attract talented students from a diverse range of physical science and engineering backgrounds and involve them with highly motivated academic staff in a variety of innovative teaching and industrial-based research activities. The programme aims to prepare graduates for global challenges in competitiveness, through an enhanced PhD programme that will:1. Challenge students and promote independent problem solving and interdiscpilnarity,2. Expose them to industrial innovation, exciting new science and the international research community, 3. Increase their fundamental skills, and broaden them as individuals in preparation for future management and leadership roles.The DTC will be aligned with major multidisciplinary research centres and with the strong involvement of NAMTEC (the National Metals Technology Centre) and over twenty companies across many sectors. Learning will be up to date and industrially relevant, as well as benefitting from access to 30M of state-of-the art research facilities.Research projects will be targeted at high value UK strategic technology sectors, such as aerospace, automotive, power generation, renewables, and defence and aim to:1. Provide a multidisciplinary approach to the whole product life cycle; from raw material, to semi finished products to forming, joining, surface engineering/coating, in service performance and recycling via the wide skill base of the combined academic team and industrial collaborators.2. Improve the basic understanding of how nano-, micro- and meso-scale physical processes control material microstructures and thereby properties, in order to radically improve industrial processes, and advance techniques of modelling and process simulation.3. Develop new innovative processes and processing routes, i.e. disruptive or transformative technologies.4. Address challenges in energy by the development of advanced metallic solutions and manufacturing technologies for nuclear power, reduced CO2 emissions, and renewable energy. 5. Study issues and develop techniques for interfacing metallic materials into advanced hybrid structures with polymers, laminates, foams and composites etc. 6. Develop novel coatings and surface treatments to protect new light alloys and hybrid structures, in hostile environments, reduce environmental impact of chemical treatments and add value and increase functionality. 7. Reduce environmental impact through reductions in process energy costs and concurrently develop new materials that address the environmental challenges in weight saving and recyclability technologies. This we believe will produce PhD graduates with a superior skills base enabling problem solving and leadership expertise well beyond a conventional PhD project, i.e. a DTC with a structured programme and stimulating methods of engagement, will produce internationally competitive doctoral graduates that can engage with today's diverse metallurgical issues and contribute to the development of a high level knowledge-based UK manufacturing sector.

    visibility54
    visibilityviews54
    downloaddownloads316
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/G022402/1
    Funder Contribution: 406,440 GBP

    There are clear drivers in the transport industry towards lower fuel consumption and CO2 emissions through the introduction of designs involving combinations of different material classes, such as steel, titanium, magnesium and aluminium alloys, metal sheet and castings, and laminates in more efficient hybrid structures. The future direction of the transport industry will thus undoubtedly be based on multi-material solutions. This shift in design philosophy is already past the embryonic stage, with the introduction of aluminium front end steel body shells (BMW 5 series) and the integration of aluminium sheet and magnesium high pressure die castings in aluminium car bodies (e.g. Jaguar XK).Such material combinations are currently joined by fasteners, which are expensive and inefficient, as they are very difficult to weld by conventional technologies like electrical resistance spot, MIG arc, and laser welding. New advanced solid state friction based welding techniques can potentially overcome many of the issues associated with joining dissimilar material combinations, as they lower the overall heat input and do not melt the materials. This greatly reduces the tendency for poor bond strengths, due to interfacial reaction and solidification cracking, as well as damage to thermally sensitive materials like laminates and aluminium alloys used in automotive bodies, which are designed to harden during paint baking. Friction joining techniques are also far more efficient, resulting in energy savings of > 90% relative to resistance spot and laser welding, are more robust processes, and can be readily used in combination with adhesive bonding.This project, in close collaboration with industry (e.g. Jaguar - Land Rover, Airbus, Corus, Meridian, Novelis, TWI, Sonobond) will investigate materials and process issues associated with optimising friction joining of hybrid, more mass efficient structures, focusing on; Friction Stir, Friction Stir Spot, and High Power Ultrasonic Spot welding. The work will be underpinned by novel approaches to developing models of these exciting new processes and detailed analysis and modelling of key material interactions, such as interfacial bonding / reaction and weld microstructure formation.

    visibility0
    visibilityviews0
    downloaddownloads147
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/G015325/1
    Funder Contribution: 313,341 GBP

    The biological membrane is a highly organised structure. Many biologically active compounds interact with the biological membrane and modify its structure and organisation in a very selective manner. Phospholipids form the basic backbone structure of biological membranes. When phospholipid layers are adsorbed on a mercury drop electrode (HMDE) they form monolayers which have a very similar structure and properties to exactly half the phospholipid bilayer of a biological membrane. The reason for this is that the fluid phospholipid layer is directly compatible with the smooth liquid mercury surface. The great advantage of this system is that the structure of the adsorbed phospholipid layer can be very closely interrogated electrochemically since it is supported on a conducting surface. In this way interactions with biologically active compounds which modify the monolayer's structure can be sensed. The disadvantage is that Hg electrodes are fragile, toxic and have no applicability for field use in spite of the sensitivity of the system to biological membrane active species. Another disadvantage is that the Hg surface can only be imaged with extreme difficulty. This project takes the above proven sensing system and modifies it in the following way. A single and an array of platinum (Pt) microelectrode(s) are fabricated on a silicon wafer. On each microelectrode a minute amount of Hg is electrodeposited and on each Hg/Pt electrode a phospholipid monolayer is deposited. The stability of each phospholipid layer will be ensured through the edge effect of the electrode. We will use the silicon wafer array to carry out controlled phospholipid deposition experiments which are not possible on the HMDE. We shall also try out other methods of phospholipid deposition. The project will exploit the fact that the microelectrode array system with deposited phospholipid monolayers is accessible for imaging. AFM studies at Leeds have already been used to image temperature induced phase changes in mica supported phospholipid bilayers showing nucleation and growth processes. The AFM system is eminently suitable therefore to image the potential induced phase changes of the phospholipid monolayers on the individual chip based microelectrodes. It is important to do this because the occurrence of these phase transitions is very sensitive to the interaction of the phospholipid layer with biomembrane active species.In addition the mechanism of the phase changes which are fundamentally the same as those occurring in the electroporation of cells are of immense physical interest and a greater understanding of them can be gained through their imaging. We shall also attempt to image the interaction of the layer with membrane active peptides at different potential values. The AFM system will be developed to image the conformation and state of aggregation of adsorbed anti-microbial peptides on the monolayer in particular as a function of potential change. When biomembrane active compounds interact with phospholipid layers on Hg they alter the fluidity and organisation of the layers. This in turn affects the characteristics of the potential induced phase transitions. This can be very effectively monitored electrochemically by rapid cyclic voltammetry (RCV). Interferences to the analysis will be characterised. Pattern recognition techniques will be developed to characterise the electrochemical response to individual active compounds.The project will deliver a sensor on a silicon wafer which has the potential to detect low levels of biomembrane active organic compounds in natural waters and to assess the biomembrane activity of pharmaceutical compounds. The proven feasibility of cleaning the Hg/Pt electrode and renewing the sensing phospholipid layer will facilitate the incorporation of the device into a flow through system with a full automation and programmable operation.

    more_vert
  • Funder: UKRI Project Code: EP/H009817/1
    Funder Contribution: 608,548 GBP

    The global semiconductor market has a value of around $1trillion, over 90% of which is silicon based. In many senses silicon has driven the growth in the world economy for the last 40 years and has had an unparalleled cultural impact. Given the current level of commitment to silicon fabrication and its integration with other systems in terms of intellectual investment and foundry cost this is unlikely to change for the foreseeable future. Silicon is used in almost all electronic circuitry. However, there is one area of electronics that, at the moment, silicon cannnot be used to fill; that is in the emission of light. Silicon cannot normally emit light, but nearly all telecommunications and internet data transfer is currently done using light transmitted down fibre optics. So in everyones home signals are encoded by silicon and transmitted down wires to a station where other (expensive) components combine these signals and send light down fibres. If cheap silicon light emitters were available, the fibre optics could be brought into everyones homes and the data rate into and out of our homes would increase enormously. Also the connection between chips on circuit boards and even within chips could be performed using light instead of electricity. The applicants intend to form a consortium in the UK and to collaborate with international research groups to make silicon emit light using tiny clumps of silicon, called nanocrystals;. These nanocrystals can emit light in the visible and can be made to emit in the infrared by adding erbium atoms to them. A number of techniques available in Manchester, London and Guildford will be applied to such silicon chips to understand the light emission and to try to make silicon chips that emit light when electricity is passed through them. This will create a versatile silicon optical platform with applications in telecommunications, solar energy and secure communications. This technology would be commercialised by the applicants using a high tech start-up commpany.

    more_vert
  • Funder: UKRI Project Code: EP/H009612/1
    Funder Contribution: 5,814,410 GBP

    Reducing carbon emissions and securing energy supplies are crucial international goals to which energy demand reduction must make a major contribution. On a national level, demand reduction, deployment of new and renewable energy technologies, and decarbonisation of the energy supply are essential if the UK is to meet its legally binding carbon reduction targets. As a result, this area is an important theme within the EPSRC's strategic plan, but one that suffers from historical underinvestment and a serious shortage of appropriately skilled researchers. Major energy demand reductions are required within the working lifetime of Doctoral Training Centre (DTC) graduates, i.e. by 2050. Students will thus have to be capable of identifying and undertaking research that will have an impact within their 35 year post-doctoral career. The challenges will be exacerbated as our population ages, as climate change advances and as fuel prices rise: successful demand reduction requires both detailed technical knowledge and multi-disciplinary skills. The DTC will therefore span the interfaces between traditional disciplines to develop a training programme that teaches the context and process-bound problems of technology deployment, along with the communication and leadership skills needed to initiate real change within the tight time scale required. It will be jointly operated by University College London (UCL) and Loughborough University (LU); two world-class centres of energy research. Through the cross-faculty Energy Institute at UCL and Sustainability Research School at LU, over 80 academics have been identified who are able and willing to supervise DTC students. These experts span the full range of necessary disciplines from science and engineering to ergonomics and design, psychology and sociology through to economics and politics. The reputation of the universities will enable them to attract the very best students to this research area.The DTC will begin with a 1 year joint MRes programme followed by a 3 year PhD programme including a placement abroad and the opportunity for each DTC student to employ an undergraduate intern to assist them. Students will be trained in communication methods and alternative forms of public engagement. They will thus understand the energy challenges faced by the UK, appreciate the international energy landscape, develop people-management and communication skills, and so acquire the competence to make a tangible impact. An annual colloquium will be the focal point of the DTC year acting as a show-case and major mechanism for connection to the wider stakeholder community.The DTC will be led by internationally eminent academics (Prof Robert Lowe, Director, and Prof Kevin J Lomas, Deputy Director), together they have over 50 years of experience in this sector. They will be supported by a management structure headed by an Advisory Board chaired by Pascal Terrien, Director of the European Centre and Laboratories for Energy Efficiency Research and responsible for the Demand Reduction programme of the UK Energy Technology Institute. This will help secure the international, industrial and UK research linkages of the DTC.Students will receive a stipend that is competitive with other DTCs in the energy arena and, for work in certain areas, further enhancement from industrial sponsors. They will have a personal annual research allowance, an excellent research environment and access to resources. Both Universities are committed to energy research at the highest level, and each has invested over 3.2M in academic appointments, infrastructure development and other support, specifically to the energy demand reduction area. Each university will match the EPSRC funded studentships one-for-one, with funding from other sources. This DTC will therefore train at least 100 students over its 8 year life.

    visibility30
    visibilityviews30
    downloaddownloads721
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/G036608/1
    Funder Contribution: 6,550,560 GBP

    There are major challenges inherent in meeting the goals of the UK national energy policy, including, climate change mitigation and adaption, security of supply, asset renewal, supply infrastructure etc. Additionally, there is a recognized shortage of high quality scientists and engineers with energy-related training to tackle these challenges, and to support the UK's future research and development and innovation performance as evidenced by several recent reports;Doosan Babcock (Energy Brief, Issue 3, June 2007, Doosan Babcock); UK Energy Institute (conducted by Deloitte/Norman Broadbent, 'Skills Needs in the Energy Industry' 2008); The Institution of Engineering and Technology, (evidence to the House of Commons, Select Committee on Innovation, Universities, Science and Skills Fifth Report (19th June 2008); The Energy Research Partnership (Investigation into High-level Skills Shortages in the Energy Sector, March 2007). Here we present a proposal to host a Doctoral Training Centre (DTC) focusing on the development of technologies for a low carbon future, providing a challenging, exciting and inspiring research environment for the development of tomorrow's research leaders. This DTC will bring together a cohort of postgraduate research students and their supervisors to develop innovative technologies for a low carbon future based around the key interlinking themes: [1] Low Carbon Enabling Technologies; [2] Transport & Energy; [3] Carbon Storage, underpinned by [4] Climate Change & Energy Systems Research. Thereby each student will develop high level expertise in a particular topic but with excitement of working in a multidisciplinary environment. The DTC will be integrated within a campus wide Interdisciplinary Institute which coordinates energy research to tackle the 'Grand Challenge' of developing technologies for a low carbon future, our DTC students therefore working in a transformational research environment. The DTC will be housed in a NEW 14.8M Energy Research Building and administered by the established (2005) cross campus Earth, Energy & Environment (EEE) University Interdisciplinary Institute

    visibility203
    visibilityviews203
    downloaddownloads3,072
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/H003177/1
    Funder Contribution: 994,556 GBP

    Attoseconds (10^(-18) sec) are the natural time-scale for multi-electron effects during complete ionization and break-up of multi-electron atoms and molecules. The recent advances in generating ultrashort laser pulses raise the possibility to investigate atomic, molecular, and nuclear physics at this new time-scale, bringing a revolution in our microscopic knowledge and understanding of matter. Two fascinating and complementary challenges of Attoscience are to identify the physical mechanisms underlying the correlated multi-electron dynamics--of fundamental interest to, for instance, molecular imaging--in atomic and molecular systems and to devise schemes to probe/control these mechanisms. This is the overall aim of the proposed research. Steering the electronic motion for manipulating small molecules will pave the way for modifying the structure of complex biomolecules, thus impacting such diverse fields as physics, chemistry, biology and material science. The problem consists of exploring the interaction of complex atoms and molecules driven by intense and ultrashort laser pulses. Given the state of the art in computational capabilities, solving this problem with three-dimensional (3-d) first-principle techniques, namely, quantum mechanical ones, is an immense task. Thus, classical/semiclassical techniques, which are much faster than quantum mechanical ones, will be instrumental in exploring the correlated electron dynamics in driven complex atomic and molecular systems. I recently developed, in the context of the driven double ionization of Helium, a 3-d classical method that addresses the full fragmentation of driven systems. The advantage of this technique is that it is much faster than quantum mechanical treatments and it accounts for the Coulomb singularity--the infinitely strong force an electron experiences when it is close to the atomic center. It is thus a step forward compared to previous classical studies which ignore the Coulomb singularity altogether. I propose to generalize this quasiclassical technique, and develop an efficient and sophisticated numerical tool for the treatmentof the full fragmentation of complex driven atomic and molecular systems.Using this 3-d quasiclassical technique, I will first address multi-electron effects in three electron atoms driven by strong laser pulses--a problem vastly unexplored. One of the main goals is to probe (time-resolve) the main mechanisms/paths the three electrons follow to escape during the fragmentation process when the atom is interacting with a very weak field (single photon absorption). I will do so using a circularly polarized infrared ultrashort laser pulse as an attosecond clock to map the information obtained from the observed spectra of the final fragments to the attosecond correlated electron dynamics. I will then proceed to explore the correlated electron dynamics in the double ionization of two- active or two-electron diatomic molecules with moving nuclei when driven by intense ultrashort laser pulses. This problem is at the forefront of Attoscience and is far from being theoretically well understood. Using pulses of different intensity I will be able to explore different ionization regimes and for each regime explore the different mechanisms that govern the two electron escape, the effect of the two atomic centers on the double ionization, and the interplay of processes that result in different final products. The vision is to generalize these studies to tackle driven triatomic molecules with moving nuclei--an unexplored problem--and study the break-up geometries and their dependence on the initial molecular state. Finally, combining my expertise on probing single photon processes and on multi-electron effects of strongly driven molecules, I will address time-resolving and controlling the electronic motion during the break-up of driven multi-center molecules using combinations of ultrashort laser pulses.

    more_vert
  • Funder: UKRI Project Code: EP/G00496X/1
    Funder Contribution: 527,372 GBP

    My research programme is the study of how relativistic effects can be exploited to improve quantum information tasks, a key topic of immense technological importance already today and more so for the next decades. The vantage point of these investigations is that the world is fundamentally both quantum and relativistic, and that these facts are immensely useful for the design of communication devices that are absolutely safe from eavesdropping, and of quantum computers that can quickly perform difficult computational tasks which overwhelm any classically imaginable computer. Indeed, impressive technological achievements and promises have already been derived from taking seriously solely the quantum aspects of matter: quantum cryptography and communication have become a technical reality in recent years, but the practical construction of a quantum computer still requires to understand better how to efficiently store, manipulate and read information, without prohibitively large disturbances from the environment. Throwing relativity into the equation fundamentally changes the entire game, as I could show in a series of research papers, one of which was featured in a generally accessible Science article highlighting my work (Cho, Science 2005). I propose to push this exciting line of theoretical research to the point where relativistic effects in quantum information theory can be exploited technologically.Far from yielding only quantitative corrections, relativity plays a dominant role in the qualitative behaviour of many physical systems used to implement quantum information tasks in the laboratory. The prototypical example is provided by any system involving light, be it for the transmission or manipulation of quantum information. There is no such thing as a non-relativistic approximation to light quanta, so-called photons, since these always travel at the speed of light. While relativistic quantum theory, commonly known as quantum field theory, is a very well studied subject in foundational particle physics, research in quantum information theory selectively focused almost exclusively on those aspects one can study without relativity. Thus both unexpected obstacles (such as a relativistic degradation of quantum entanglement) and unimagined possibilities for quantum information theory (such as improved quantum cryptography and hypersensitive quantum measurement devices) have gone unnoticed. The relevance of these insights, which together with co-workers, I afforded over the past few years, are evidenced by the amount of work by other researchers recognizing and building on my work. Indeed, the impact of my research extends beyond pure quantum information theory, and applications to foundational questions in cosmology and black hole physics have been found.The research I propose to complete during my Fellowship aims at providing comprehensive answers to foundational, theoretical and technological aspects of relativistic quantum information theory, exploiting and building on the intriguing results obtained so far. My overall aspiration and vision is to ultimately provide concrete solutions to key problems in the field of quantum information theory.

    more_vert
  • Funder: UKRI Project Code: EP/G034303/1
    Funder Contribution: 4,569,560 GBP

    Recently the media has been awash with reports on the downloading and sharing of music files, a crisis which strikes at the economic viability of the entire global music industry. This is a startling reminder of the security challenges posed, in both the civil and criminal domains, as we move relentlessly to a world in which all Information Technology is fully connected, facilitated by the development and rapid uptake of Web 2.0. This, and its successors, will radically transform society in a way unimaginable a decade ago. However, with the accrued benefits come major threats in terms of privacy, security of information and vulnerability to external attack. Threats range, in the criminal domain, from the petty criminal stealing credit card details, through trouble making hacktivists, who attack organisations to further political aims, to the sinister cyber-terrorists, who attack strategic targets in the same way that terrorists would bomb and destroy national infrastructure. At the heart of the CSIT project is the perennial challenge of making all of the IT solutions, of today and tomorrow, secure. CSIT will be a world-class Research and Innovation centre coupling major research breakthroughs in Secure Information Technology with exciting developments in innovation and commercialisation.Information Technology in the widest sense deals with the use of electronic computers and computer software to convert, store, analyze, transmit, and retrieve information. So, the IT field covers every aspect of data processing from the banking using one's home PC with its (increasingly wireless) broadband connection, through to the complex systems which control and manage the world's aviation, maritime and telecommunications systems. As anyone who has had a virus, worm, Trojan or spyware on their home PC can readily testify, security is an essential requirement for any IT systems in order to retain privacy, integrity and trust. When electronic sensor devices and CCTV cameras are networked and combined with computer processing, IT then becomes a power enabling tool in the field of physical infrastructure protection, which includes fire monitoring, asset tracking and intrusion detection. Thus while IT security itself is often a matter of defending against automated attack by viral programs, IT for asset protection is a tool to assist the human operator. The IT systems used for infrastructure systems must themselves be secure not least because personal biometric data is increasingly being rolled out as a part of the solution.IT systems are analysed into a stack of independent layers along lines defined in international standards. CSIT staff are world leaders in academic research in these layers, an attribute which is reflected in the four initial fields of academic research: data systems, networks, wireless and intelligent surveillance. However a key distinguishing feature of CSIT is the fact that it understands, because of its history, the necessity to ultimately take a the holistic, or systems engineering, perspective in order to research and develop the creation of complete secure IT systems, which undoubtedly are greater than the sum of their layers. The involvement of many industrial partners in CSIT bears witness to this.The driving goal for CSIT is to strategically position U.K. industry at the forefront of the field of secure IT because this field is a critical, emerging and rapidly growing sector with its wider benefits for the safety and security of society. Embedded within Queen's University, with its very successful record of industrial collaboration and spin-out company formation, CSIT therefore lends itself well to a strong business and academic partnership, creating a continuous flow of knowledge transfer opportunities, with realizable shorter term milestones for transfer of the research, coupled with exciting opportunities for major breakthroughs and ensuing commercial opportunities for UK industry.

    more_vert
  • Funder: UKRI Project Code: EP/G007217/1
    Funder Contribution: 1,565,450 GBP

    Achieving the carbon target for steel and aluminium requires an industry-wide transformation which will result in new business models and new metal flows. The proposal aims to identify credible scenarios for achieving the target, to specify the barriers to achieving them, and to define the economic and policy measures required to drive change. In parallel, the proposal aims to deliver basic technology research that will allow more options for a future materially efficient steel and aluminium economy.It is widely agreed that a cut of at least 60% in global greenhouse gas emissions will be required by 2050 to limit the adverse effects of climate change. Steel and aluminium are responsible for 8% of global energy related emissions. Industry efforts to date have focused on reducing energy in primary production, and recycling metal by melting and re-casting. However, demand for both steel and aluminium is forecast to double, recycling rates are already around 60-70% and the most optimistic projections for energy efficiency improvements deliver only 30% reduction per unit output of material. Efficiency improvements alone are not sufficient, but the 2050 target can be achieved if, in addition to existing measures, energy used in converting ingots to products is halved, the volume of metal used in each application is reduced, and a substantial fraction of metal is re-used without melting. In pursuing this strategy, this proposal is aligned with the EPSRC strategic theme on energy demand reduction.The need for clarity about the physical implications of responding to the carbon target has become a major priority in the metal producing and using industry. Without the work described in this proposal, it is not possible for the government, industry and the public to understand and negotiate the choices they must collectively make in order to meet the carbon target in this sector. Accordingly, this proposal comes with support of 2 million in committed effort from 20 global companies, all with operations in the UK. The business activities of the consortium span primary metal production, conventional recycling, equipment manufacture, road transport, construction, aerospace, packaging and knowledge transfer.The work of the fellowship will be split between business analysis and technology innovation themes. The business analysis theme will identify future scenarios, barriers and a roadmap for meeting the target. This work will include specific analysis of future metal flows, application of a global economic model and the analysis of policy measures. The technology innovation theme aims to optimize the requirements for metal use through novel manufacturing process design, to increase material and energy efficiency in forming and finishing, and to develop solid-state closed-loop recycling for metals. Both themes will be developed in collaboration with the consortium, and will also draw on an international scientific panel and a cross-disciplinary advisory panel in Cambridge.The work will lead to two major reports for wide distribution, direct dissemination into the partner companies, training courses, technology assessments and physical demonstrations of the technology innovations. These will include a demonstration for public engagement. The results of the work on steel and aluminium will be used to stimulate interest among business leaders in other sectors, and will form the basis for a longer term Centre for Low Carbon Materials Processing in Cambridge.The Leadership Fellowship offers a unique and timely opportunity to undertake the basic research required to drive a step-change in material efficiency, by demonstrating that a different flow of metal through the global economy is technically and economically possible, and by inspiring and informing those who can influence change.

    more_vert