Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
16 Projects, page 1 of 2

  • Canada
  • 2013-2022
  • UK Research and Innovation
  • UKRI|EPSRC
  • 2013

10
arrow_drop_down
  • Funder: UKRI Project Code: EP/K008781/1
    Funder Contribution: 347,135 GBP
    Partners: University of Leicester, NRCan, STFC - Laboratories, SolarMetrics

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres. However there is a lack of ground infrastructure in the Arctic to support communications via the standard VHF links (and over the Arctic Ocean such links are impossible) and communication via geostationary satellites is not possible above about 82 degrees latitude because of the curvature of the Earth. Thus for the high latitude flights it is necessary to use high frequency (HF) radio for communication. HF radio relies on reflections from the ionosphere to achieve long distance communication round the curve of the Earth. Unfortunately the high latitude ionosphere is affected by space weather disturbances that can disrupt communications. These disturbances originate with events on the Sun such as solar flares and coronal mass ejections that send out particles that are guided by the Earth's magnetic field into the regions around the poles. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. Often, the necessity to land and refuel for these longer routes further increases the fuel consumption. The work described in this proposal cannot prevent the space weather disturbances and their effects on radio communication, but by developing a detailed understanding of the phenomena and using this to provide space weather information services the disruption to flight operations can be minimised. The occurrence of ionospheric disturbances and disruption of radio communication follows the 11-year cycle in solar activity. During the last peak in solar activity a number of events caused disruption of trans-Atlantic air routes. Disruptions to radio communications in recent years have been less frequent as we were at the low phase of the solar cycle. However, in the next few years there will be an upswing in solar activity that will produce a consequent increase in radio communications problems. The increased use of trans-polar routes and the requirement to handle greater traffic density on trans-Atlantic routes both mean that maintaining reliable high latitude communications will be even more important in the future.

  • Funder: UKRI Project Code: EP/K036033/1
    Funder Contribution: 236,177 GBP
    Partners: Scottish and Southern Energy SSE plc, University of Edinburgh, PTRC, UKCCS Research Centre

    Carbon capture and storage (CCS) has emerged as a promising means of lowering CO2 emissions from fossil fuel combustion. However, concerns about the possibility of harmful CO2 leakage are contributing to slow widespread adoption of the technology. Research to date has failed to identify a cheap and effective means of unambiguously identifying leakage of CO2 injected, or a viable means of identifying ownership of it. This means that in the event of a leak from a storage site that multiple operators have injected into, it is impossible to determine whose CO2 is leaking. The on-going debate regarding leakage and how to detect it has been frequently documented in the popular press and scientific publications. This has contributed to public confusion and fear, particularly close to proposed storage sites, causing the cancellation of several large storage projects such as that at Barendrecht in the Netherlands. One means to reduce public fears over CCS is to demonstrate a simple method which is able to reliably detect the leakage of CO2 from a storage site and determine the ownership of that CO2. Measurements of noble gases (helium, neon, argon, krypton and xenon) and the ratios of light and heavy stable isotopes of carbon and oxygen in natural CO2 fields have shown how CO2 is naturally stored over millions of years. Noble gases have also proved to be effective at identifying the natural leakage of CO2 above a CO2 reservoir in Arizona and an oil field in Wyoming and in ruling out the alleged leakage of CO2 from the Weyburn storage site in Canada. Recent research has shown amounts of krypton are enhanced relative to those of argon and helium in CO2 captured from a nitrate fertiliser plant in Brazil. This enrichment is due to the greater solubility of the heavier noble gases, so they are more readily dissolved into the solvent used for capture. This fingerprint has been shown to act as an effective means of tracking CO2 injected into Brazilian and USA oil fields to increase oil production. Similar enrichments in heavy noble gases, along with high helium concentrations are well documented in coals, coal-bed methane and in organic rich oil and gas source rocks. As noble gases are unreactive, these enrichments will not be affected by burning the gas or coal in a power station and hence will be passed onto the flue gases. Samples of CO2 obtained from an oxyfuel pilot CO2 capture plant at Lacq in France which contain helium and krypton enrichments well above atmospheric values confirm this. Despite identification of these distinctive fingerprints, no study has yet investigated if there is a correlation between them and different CO2 capture technologies or the fossil fuel being burnt. We propose to measure the carbon and oxygen stable isotope and noble gas fingerprint in captured CO2 from post, pre and oxyfuel pilot capture plants. We will find out if unique fingerprints arise from the capture technology used or fuel being burnt. We will determine if these fingerprints are distinctive enough to track the CO2 once it is injected underground without the need of adding expense artificial tracers. We will investigate if they are sufficient to distinguish ownership of multiple CO2 streams injected into the same storage site and if they can provide an early warning of unplanned CO2 movement out of the storage site. To do this we will determine the fingerprint of CO2 captured from the Boundary Dam Power Plant prior to its injection into the Aquistore saline aquifer storage site in Saskatechwan, Canada. By comparing this to the fingerprint of the CO2 produced from the Aquistore monitoring well, some 100m from the injection well, we will be able to see if the fingerprint is retained after the CO2 has moved through the saline aquifer. This will show if this technique can be used to track the movement of CO2 in future engineered storage sites, particularly offshore saline aquifers which will be used for future UK large volume CO2 storage.

  • Funder: UKRI Project Code: EP/L001942/1
    Funder Contribution: 254,532 GBP
    Partners: Newcastle University, UoC

    Corrosion of metals affects multiple industries and poses major risks to the environment and human safety, and is estimated to cause economic losses in excess of £2.5 trillion worldwide (around 6% of global GDP). Microbiologically-influenced corrosion (MIC) is believed to play a major role in this, but precise estimates are prevented by our limited understanding of MIC-related processes. In the oil and gas sector biocorrosion is usually linked to the problem of "souring" caused by sulfate-reducing bacteria (SRB) that produce corrosive hydrogen sulfide in subsurface reservoirs and topsides facilities. To combat souring, reservoir engineers have begun turning to nitrate injection as a green biotechnology whereby sulfide removal can be catalysed by diverse sulfide-oxidising nitrate-reducing bacteria (soNRB). However, this promising technology is threatened by reports that soNRB could enhance localized corrosion through incomplete oxidation of sulfide to corrosive sulfur intermediates. It is likely that soNRB are corrosive under certain circumstances; end products of soNRB metabolism vary depending prevailing levels of sulfide (i.e., from the SRB-catalyzed reservoir souring) and nitrate (i.e., the engineering "nitrate dose" introduced to combat souring). Furthermore soNRB corrosion will depend on the specific physiological features of the particular strains present, which vary from field to field, but usually include members of the Epsilonproteobacteria - the most frequently detected bacterial phylum in 16S rRNA genomic surveys of medium temperature oil fields. A new era of biological knowledge is dawning with the advent of inexpensive, high throughput nucleic acid sequencing technologies that can now be applied to microbial genomics. New high throughput sequencing platforms are allowing unprecedented levels of interrogation of microbial communities at the DNA (genomic) and RNA (transcriptomic) levels. Engineering biology aims to harness the power of this biological "-omics" revolution by bringing these powerful tools to bear on industrial problems like biocorrosion. This project will combine genomics and transcriptomics with process measurements of soNRB metabolism and real time corrosion monitoring via linear polarization resistance. By measuring all of these variables in experimental oil field microcosms, and scaling-up to pan-industry oil field screening, a predictive understanding of corrosion linked to nitrogen and sulfur biotransformations will emerge, putting new diagnostic genomics assays in the hands of petroleum engineers. The oil industry needs green technologies like nitrate injection. This research will develop new approaches that will safeguard this promising technology by allowing nitrate-associated biocorrosion potential to be assessed in advance. This will enhance nitrate injection's ongoing successful application to be based on informed risk assessments.

  • Funder: UKRI Project Code: EP/K020404/1
    Funder Contribution: 585,535 GBP
    Partners: Thornhill Research Inc, Cardiff University, University of California, Berkely, GE Healthcare, GlaxoSmithKline, University of Toronto

    Diseases of the brain including neurological conditions, such as epilepsy, multiple sclerosis and dementia, and common psychiatric conditions such as depression and schizophrenia, have considerable personal, social and economic costs for the sufferers and their carers. Improving the tools at our disposal for quantifying brain function would help with diagnosis, choosing the right treatment for the patient and developing new, more effective, treatments. This proposal aims to develop a reliable non-invasive brain imaging method using magnetic resonance imaging (MRI) that maps, across the whole human brain with a spatial resolution of a few millimetres, the amount of oxygen that the brain is consuming. The rate of oxygen consumption, known as CMRO2, reflects neural activity and can change through disease processes. It provides a marker of disease and treatment related alterations in brain activity. Our proposed method would also map the functional characteristics of brain blood vessels whose health is crucial for the supply of oxygen and nutrients to the brain. Until recently, it has only been possible to quantitatively map the human brain's metabolic energy use through positron emission tomography (PET), which relies on radioactive tracers. The application of such measurements is limited, as in order to minimise radiation doses, it cannot be applied many times in the same patients or healthy volunteers. This hampers the repeated study of disease or treatment progression and the study of normal brain development and aging. Our proposed method would avoid the use of ionizing radiation, would be cheaper than PET and more widely available, and would expand the applications of quantified CMRO2 mapping to more centres, leading to improved treatment targeting and potential healthcare cost savings. We have performed some initial tests that show our proposed method to be feasible. It relies on mapping simultaneously the flow of blood to each part of the brain and the oxygenation of the blood leaving each part of the brain. Necessary for the measurement is the modulation of brain blood flow and oxygen levels, achieved by asking volunteers to breathe air enriched with carbon dioxide and oxygen. These procedures involve the volunteer wearing a face-mask but are safe and well tolerated. Our proposed method should yield additional information describing cerebrovascular properties compared to other recently-proposed methods. This means that it would require fewer assumptions which may be not be invalid in the diseased brain, giving our approach a wider scope of application and offering potentially richer clinical information. This proposal optimises our method to ensure it is efficient and reliable for widespread research and eventually clinical use. We propose a close collaboration between physicists developing the neuroimaging methodology and clinical academic researchers who will help us to demonstrate its clinical feasibility in two common neurological diseases, epilepsy and multiple sclerosis (MS). About 70% of the project will be methodological development to optimise our image acquisition and data analysis strategy to yield accurate and repeatable measurements within about 10 minutes of scanning. The remaining 30% of the project will validate the method in groups of epilepsy and MS patients who volunteer to help us with our research. Validation will be performed by comparison with PET, the current 'gold standard.' The project will develop and benefit from partnerships with academic and industrial researchers in the UK and internationally. In particular, the work has good potential for application in the drug development industry, a strong industrial sector in the UK, for the development of new and effective compounds to treat psychiatric and neurological disorders. This project would help maintain the UK at the forefront internationally of neuroimaging research, a position it has long held and from which it has benefitted.

  • Funder: UKRI Project Code: EP/K021699/1
    Funder Contribution: 5,782,840 GBP
    Partners: UK Society for Trenchless Technology, Stratophase Ltd, Bristol Water Plc, University of Birmingham, Leica Microsystems (United Kingdom), Globe Performance Solutions, National Grid PLC, Infotec Consulting, United Utilities, OSYS Technology Ltd...

    The surface urban transport infrastructures - our roads, cycle ways, pedestrian areas, tramways and railways - are supported by the ground, and hence the properties of the ground must control to a significant degree their structural performance. The utility services infrastructure - the pipes and cables that deliver utility services to our homes and which supports urban living - is usually buried beneath our urban streets, that is it lies below the surface transport infrastructure (usually roads and paved pedestrian areas). It follows that streetworks to install, replace, repair or maintain these utility service pipes or cables using traditional trench excavations will disrupt traffic and people movement, and will often significantly damage the surface transport infrastructure and the ground on which it bears. It is clear, therefore, that the ground and physical (i.e. utility service and surface transport) infrastructures exist according to a symbiotic relationship: intervene physically in one, and the others are almost inevitably affected in some way, either immediately or in the future. Moreover the physical condition of the pipes and cables, of the ground and of the overlying road structure, is consequently of crucial importance in determining the nature and severity of the impacts that streetworks cause. Assessing the Underworld (ATU) aims to use geophysical sensors deployed both on the surface and inside water pipes to determine remotely (that is, without excavation) the condition of these urban assets. ATU builds on the highly successful Mapping the Underworld (MTU) project funded by EPSRC's first IDEAS Factory (or sandpit) and supported by many industry partners. The MTU sandpit brought together a team that has grown to be acknowledged as international leaders in this field. ATU introduces leaders in climate change, infrastructure policy, engineering sustainability and pipeline systems to the MTU team to take the research into a new sphere of influence as part of a 25-year vision to make streetworks more sustainable. ATU proposes to develop the geophysical sensors created in MTU to look for different targets: indications that the buried pipes and cables are showing signs of degradation or failure, indications that the road structure is showing signs of degradation (e.g. cracking, delamination or wetting) and indications that the ground has properties different to unaltered ground (e.g. wetted or eroded by leaking pipes, loosened by local trench excavations, wetted by water ingress through cracked road structures). For example, a deteriorated (fractured, laterally displaced, corroded or holed) pipe will give a different response to the geophysical sensors than a pristine pipe, while wetting of the adjacent soil or voids created by local erosion due to leakage from a water-bearing pipe will result in a different ground response to unaltered natural soil or fill. Similarly a deteriorated road (with vertical cracks, or with a wetted foundation) will give a different response to intact, coherent bound layers sitting on a properly drained foundation. Taking the information provided by the geophysical sensors and combining it with records for the pipes, cables and roads, and introducing deterioration models for these physical infrastructures knowing their age and recorded condition (where this information is available), will allow a means of predicting how they will react if a trench is dug in a particular road. In some cases alternative construction techniques could avert serious damage (e.g. water pipe bursts, road structural failure requiring complete reconstruction) or injury (gas pipe busts). Making this information available will be achieved by creating a Decision Support System for streetworks engineers. Finally, the full impacts to the economy, society and environment of streetworks will be modelled in a sustainability assessment framework so that the wider impacts of the works are made clear.

  • Funder: UKRI Project Code: EP/K026658/1
    Funder Contribution: 372,621 GBP
    Partners: European Thermodynamics (United Kingdom), Caterpillar UK Ltd, Ricardo UK Limited, JM, Loughborough University, Dana Canada Corporation

    The internal combustion engine which is in everyday use in a wide variety of applications remains one of the most cost effective means of generating power. A typical engine however loses substantial amounts of energy in its normal operation and there is clear potential to utilise this energy. The largest flow is in the exhaust system of the vehicle, and it is here that the proposed research is focussed. The main objective of the project is the realisation of an efficient method of energy recovery using a thermoelectric generator and utilising a new type of material known as a skutterudite. By adopting the same internal structure, skutterudites simulate a naturally occurring mineral which has the vital properties of low thermal conductivity with low electrical resistance. The principal advantage of these materials is their potential for cost reduction by utilising low cost metals in their structure. A second and important advantage is the future potential for novel manufacturing techniques in which the active elements of the thermoelectric generator are made using additive methods to build up the kind of complex shapes that are required. The project brings together three universities that can cover the range of capabilities from the chemistry of materials through to systems integration methods. The Heriot-Watt team will synthesise new materials using progressively lower cost materials to demonstrate that the required thermoelectric performance can be obtained using low cost materials. The Cardiff team will integrate modules, incorporating protective coatings to ensure the durability of the generator. At Loughborough, the scope to integrate thermo-electric (TE) generators with other functions such as after-treatment will be explored. The Loughborough team will work with the Cardiff team to identify novel methods of integrating the TE modules into a heat exchange device, regarding the requirements imposed by different types of engine. The project concludes with the practical demonstration of TE generators and a portfolio of simulation results that demonstrate how the cost path and the path to levels of commercial performance will be realised.

  • Funder: UKRI Project Code: EP/K015796/1
    Funder Contribution: 248,496 GBP
    Partners: Lancaster University, UBC, Johns Hopkins University Sch of Medicine, Dementias Neurodegen Network DeNDRoN, MICROSOFT RESEARCH LIMITED

    SAMS is a proposed 3-year project to that will investigate the potential for novel data and text mining techniques for detecting subtle signs of Cognitive Dysfunction that may indicate the early stages of Alzheimer's disease. Promoting self-awareness of change in cognitive function is will investigate the potential for novel data and text mining techniques for detecting subtle signs of change in cognition that may indicate the early stages of Alzheimer's disease. Promoting self-awareness of change in cognitive function is a key step in encouraging people to self-refer for clinical evaluation. A key motivation for SAMS, therefore, is to provide a non-invasive tool that helps develop such self-awareness. An increasing number of older people, the group most at risk of cognitive dysfunction and dementia, regularly use the Internet to keep in touch with their families, particularly grandchildren. This Internet activity presents an opportunity to harness rich, routinely available information that may contain indications of changes in the linguistic, executive and motor speed abilities in older people. Development work is needed to develop the software to harness this opportunity, to establish the optimal thresholds for flagging up important changes in cognition and the optimal methods for feeding this information back to individuals. SAMS will validate thresholds by examining changes in performance in people with established cognitive dysfunction and mild Alzheimer's disease and begin to explore the potential for technology-enhanced detection of early cognitive dysfunction. Patterns of computer use and content analysis of e-mails, such as forgetting topics, expressions of concern, emotion, etc., will be analysed and coupled to feedback mechanisms to enhance users' cognitive self awareness, empowering them self administer follow up tests and decide when to self refer themselves for expert medical advice. Tackling cognitive change detection requires the novel pooling of knowledge and integration of techniques from different sub-disciplines within a Computer Science. In addition to developing techniques for MCI detection and supporting self-referral, an explicit goal of the research is to develop a generic sense making and user-centred feedback architecture. This could be applied to a wide range of problems where interpreting computer use may be appropriate, e.g. mental health, social loneliness, privacy and social exploitation.

  • Funder: UKRI Project Code: EP/K037161/1
    Funder Contribution: 489,871 GBP
    Partners: Airbus, LR IMEA, Bombardier Inc, University of Southampton

    Noise and vibration are important performance aspects in many mechanical systems. High noise and vibration levels can be detrimental to structures (e.g. causing damage) and to the human operators (e.g. causing fatigue or injury). Thus, it is important to be able to understand how structures vibrate and emit noise, i.e., their vibroacoustic behavior. Traditionally, engineers would try to describe the vibroacoustics using analytical methods. However, these are only possible for very simple structures. Structures that engineers confront in the aerospace, railway or maritime sectors are often made of composite panels that are connected together using complicated structural joints. The analysis of the vibroacoustics of such complex built-up structures cannot be performed analytically. Over the years, researchers have developed numerical techniques to solve this problem. Element-based methods (such as the finite element method) are well-developed and well-established methods with many commercial/in-house codes that can be used. However, aerospace, railway and maritime structures are relatively large. For example, a typical railway car can be modelled using the finite element method up to 500 Hz. Above this frequency, the size of the finite element model becomes too large, impractical and the associated computational cost becomes prohibitive. However, the audio frequency range is 20 Hz-20 kHz. At high frequency (above 10 kHz), the railway car can be modelled using energy-based methods such as the statistical energy analysis method. Energy-based statistical methods are valuable, but less well-established than element-based methods. The railway car example points to a frequency gap, indeed a mid-frequency gap, where neither element-based nor energy-based methods can be used. I am proposing to use wave methods to bridge the mid-frequency gap and to further strengthen energy methods. Waves provide a unifying, intuitive approach to vibroacoustics. The computational cost of a wave model is substantially small (especially when compared to a full finite element model), and the wave properties of structures can be obtained by post processing the finite element model of a small segment of an arbitrarily large structure. Thus, the goal of this programme is to develop a wave-based toolbox for modelling the vibroacoustics complex built-up structures. Industrial examples from the aerospace, railway and maritime sectors will be used to demonstrate the efficiency and effectiveness of the developed methods.

  • Funder: UKRI Project Code: EP/K034383/1
    Funder Contribution: 2,246,110 GBP
    Partners: AIM, University of Warwick, Abdus Salam ICTP, University of Waterloo (Canada), University of Rome

    L-functions and modular forms are fundamental mathematical objects that encode much of our knowledge of contemporary number theory. They form part of a web of interconnected objects, the understanding of which in the most basic cases lies at the foundations of much of modern mathematics. A spectacular example is Wiles' proof of Fermat's Last Theorem, which was an application of a fundamental "modularity" link between L-functions, modular forms and elliptic curves. This project will greatly extend and generalize such connections, both theoretically and computationally. The research vision inspiring our programme can be summarised as: "Breaking the boundaries of classical L-functions and modular forms, and exploring their applications to 21st-century mathematics, physics, and computer science". Our guiding goal is to push forward both theoretical and algorithmic developments, in order to develop L-functions and modular forms far beyond current capabilities. This programme will systematically develop an extensive catalogue of number theoretic objects, and will make this information available through an integrated online resource that will become an indispensable tool for the world's research community. L-functions are to pure mathematics what fundamental particles are to physics: their interaction reveal fundamental truths. To continue the analogy, computers are to number theorists what colliders are to particle physicists. Aside from their established role as empirical "testers" for conjectures and theories, experiments can often throw up quite unexpected phenomena which go on to reshape modern theory. Our programme will establish a major database and encyclopedia of knowledge about L-functions and related objects, which will play a role analogous to that of the LHC for the scientists at CERN. Both are at the threshold of tantalising glimpses into completely uncharted territories: higher degree L-functions for us and the Higgs boson for them. Theoretical and computational work on higher degree L-functions has only started to make substantial progress in the past few years. There do not currently exist efficient methods to work with these, and rigorous computations with them are not yet possible. Neither is there yet an explicit description of all ways in which degree 3 L-functions can arise. We will address these facets in our research programme: both algorithmic development and theoretical classification. As well as having theoretical applications to modularity relationships as in Wiles' proof, detailed knowledge of L-functions has more far-reaching implications. Collections of L-functions have statistical properties which first arose in theoretical physics. This surprising connection, which has witnessed substantial developments led by researchers in Bristol, has fundamental predictive power in number theory; the synergy will be vastly extended in this programme. In another strand, number theory plays an increasingly vital role in computing and communications, as evidenced by its striking applications to both cryptography and coding theory. The Riemann Hypothesis (one of the Clay Mathematics Million Dollar Millennium Problems) concerns the distribution of prime numbers, and the correctness of the best algorithms for testing large prime numbers depend on the truth of a generalised version of this 150-year-old unsolved problem. These are algorithms which are used by public-key cryptosystems that everyone who uses the Internet relies on daily, and that underpin our digital economy. Our programme involves the creation of a huge amount of data about a wide range of modular forms and L-functions, which will far surpass in range and depth anything computed before in this area. This in turn will be used to analyse some of the most famous outstanding problems in mathematics, including the Riemann Hypothesis and another Clay problem, the Birch and Swinnerton-Dyer conjecture.

  • Funder: UKRI Project Code: EP/H00324X/2
    Funder Contribution: 275,478 GBP
    Partners: UBC, National High Magnetic Field Laboratory, University of Warwick, University of Cambridge, ANL, EWU

    Resistance is futile: lightbulbs and heaters aside, the majority of electronic components are at their most efficient when their electrical resistance is minimized. In the present climate, with energy sustainability regularly topping the international agenda, reducing the power lost in conducting devices or transmission lines is of worldwide importance. Research into the nature of novel conducting materials is hence vital to secure the global energy future.Superconductivity, the phenomenon of zero electrical resistance which occurs below a critical temperature in certain materials, remains inadequately explained. At present, these critical temperatures are typically very low, less than 140 Kelvin (-133 Celsius), but a more complete understanding of what causes the superconducting state to form could result in the design of materials that display superconductivity at the enhanced temperatures required for mass technological exploitation. Unfortunately, it is the very materials which are most likely to lead us to this end, the so-called unconventional superconductors, that are the least understood. In such materials, the superconducting state appears to be in competition with at least two other phases of matter: magnetism and normal, metallic conductivity. A delicate balance governs which is the dominant phase at low temperatures; the ground-state. By making slight adjustments to the composition of the materials or by applying moderate pressures certain interactions between the electrons in the compound can be strengthened at the expense of others causing the balance to tip in favour of a particular ground-state. The technicalities of how to do this are relatively well-known. What remains to be explained is why it happens, what it is that occurs at the vital tipping point where the superconductivity wins out over the magnetic or the metallic phases - in short, exactly what stabilizes the unconventional superconducting state? It is this question that the proposed project seeks to answer. I will use magnetic fields to explore the ground-states exhibited by three families of unconventional superconductor: the famous cuprate superconductors (whose discovery in the 1980s revolutionized the field of superconductivity and which remain the record-holders for the highest critical temperature); some recently discovered superconductors based on the most magnetic of atoms - iron (the discovery of these new materials in the spring of 2008 came as somewhat of a surprise, magnetism often being thought as competing with superconductivity); and a family of material based on superconducting layers of organic molecules. I propose to measure the strength of the interactions that are responsible for the magnetic and electronic properties of these materials as the systems are pushed, using applied pressure, through the tipping point at which the superconductivity becomes dominant. In particular, the electronic interactions in layered materials like those considered here can only be reliably and completely determined via a technique known as angle-dependent magnetoresistance. This technique remains to be applied to most unconventional superconductors, particularly at elevated pressures, mostly likely because it is experimentally challenging and familiar only to a handful of researchers. However, the rewards of performing such experiments are a far greater insight into what changes in interactions occur at the very edge of the superconducting state. Chasing the mechanism responsible for stabilizing unconventional superconductivity is an ambitious aim, and many traditional experimental techniques have proved inadquate. It is becoming clear, in the light of recent advances in the field, that the route to success lies in subjecting high-quality samples to the most extreme probes available, a combination of high magnetic fields and high applied pressures.

Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
16 Projects, page 1 of 2
  • Funder: UKRI Project Code: EP/K008781/1
    Funder Contribution: 347,135 GBP
    Partners: University of Leicester, NRCan, STFC - Laboratories, SolarMetrics

    Efficient air traffic management depends on reliable communications between aircraft and the air traffic control centres. However there is a lack of ground infrastructure in the Arctic to support communications via the standard VHF links (and over the Arctic Ocean such links are impossible) and communication via geostationary satellites is not possible above about 82 degrees latitude because of the curvature of the Earth. Thus for the high latitude flights it is necessary to use high frequency (HF) radio for communication. HF radio relies on reflections from the ionosphere to achieve long distance communication round the curve of the Earth. Unfortunately the high latitude ionosphere is affected by space weather disturbances that can disrupt communications. These disturbances originate with events on the Sun such as solar flares and coronal mass ejections that send out particles that are guided by the Earth's magnetic field into the regions around the poles. During such events HF radio communication can be severely disrupted and aircraft are forced to use longer low latitude routes with consequent increased flight time, fuel consumption and cost. Often, the necessity to land and refuel for these longer routes further increases the fuel consumption. The work described in this proposal cannot prevent the space weather disturbances and their effects on radio communication, but by developing a detailed understanding of the phenomena and using this to provide space weather information services the disruption to flight operations can be minimised. The occurrence of ionospheric disturbances and disruption of radio communication follows the 11-year cycle in solar activity. During the last peak in solar activity a number of events caused disruption of trans-Atlantic air routes. Disruptions to radio communications in recent years have been less frequent as we were at the low phase of the solar cycle. However, in the next few years there will be an upswing in solar activity that will produce a consequent increase in radio communications problems. The increased use of trans-polar routes and the requirement to handle greater traffic density on trans-Atlantic routes both mean that maintaining reliable high latitude communications will be even more important in the future.

  • Funder: UKRI Project Code: EP/K036033/1
    Funder Contribution: 236,177 GBP
    Partners: Scottish and Southern Energy SSE plc, University of Edinburgh, PTRC, UKCCS Research Centre

    Carbon capture and storage (CCS) has emerged as a promising means of lowering CO2 emissions from fossil fuel combustion. However, concerns about the possibility of harmful CO2 leakage are contributing to slow widespread adoption of the technology. Research to date has failed to identify a cheap and effective means of unambiguously identifying leakage of CO2 injected, or a viable means of identifying ownership of it. This means that in the event of a leak from a storage site that multiple operators have injected into, it is impossible to determine whose CO2 is leaking. The on-going debate regarding leakage and how to detect it has been frequently documented in the popular press and scientific publications. This has contributed to public confusion and fear, particularly close to proposed storage sites, causing the cancellation of several large storage projects such as that at Barendrecht in the Netherlands. One means to reduce public fears over CCS is to demonstrate a simple method which is able to reliably detect the leakage of CO2 from a storage site and determine the ownership of that CO2. Measurements of noble gases (helium, neon, argon, krypton and xenon) and the ratios of light and heavy stable isotopes of carbon and oxygen in natural CO2 fields have shown how CO2 is naturally stored over millions of years. Noble gases have also proved to be effective at identifying the natural leakage of CO2 above a CO2 reservoir in Arizona and an oil field in Wyoming and in ruling out the alleged leakage of CO2 from the Weyburn storage site in Canada. Recent research has shown amounts of krypton are enhanced relative to those of argon and helium in CO2 captured from a nitrate fertiliser plant in Brazil. This enrichment is due to the greater solubility of the heavier noble gases, so they are more readily dissolved into the solvent used for capture. This fingerprint has been shown to act as an effective means of tracking CO2 injected into Brazilian and USA oil fields to increase oil production. Similar enrichments in heavy noble gases, along with high helium concentrations are well documented in coals, coal-bed methane and in organic rich oil and gas source rocks. As noble gases are unreactive, these enrichments will not be affected by burning the gas or coal in a power station and hence will be passed onto the flue gases. Samples of CO2 obtained from an oxyfuel pilot CO2 capture plant at Lacq in France which contain helium and krypton enrichments well above atmospheric values confirm this. Despite identification of these distinctive fingerprints, no study has yet investigated if there is a correlation between them and different CO2 capture technologies or the fossil fuel being burnt. We propose to measure the carbon and oxygen stable isotope and noble gas fingerprint in captured CO2 from post, pre and oxyfuel pilot capture plants. We will find out if unique fingerprints arise from the capture technology used or fuel being burnt. We will determine if these fingerprints are distinctive enough to track the CO2 once it is injected underground without the need of adding expense artificial tracers. We will investigate if they are sufficient to distinguish ownership of multiple CO2 streams injected into the same storage site and if they can provide an early warning of unplanned CO2 movement out of the storage site. To do this we will determine the fingerprint of CO2 captured from the Boundary Dam Power Plant prior to its injection into the Aquistore saline aquifer storage site in Saskatechwan, Canada. By comparing this to the fingerprint of the CO2 produced from the Aquistore monitoring well, some 100m from the injection well, we will be able to see if the fingerprint is retained after the CO2 has moved through the saline aquifer. This will show if this technique can be used to track the movement of CO2 in future engineered storage sites, particularly offshore saline aquifers which will be used for future UK large volume CO2 storage.

  • Funder: UKRI Project Code: EP/L001942/1
    Funder Contribution: 254,532 GBP
    Partners: Newcastle University, UoC

    Corrosion of metals affects multiple industries and poses major risks to the environment and human safety, and is estimated to cause economic losses in excess of £2.5 trillion worldwide (around 6% of global GDP). Microbiologically-influenced corrosion (MIC) is believed to play a major role in this, but precise estimates are prevented by our limited understanding of MIC-related processes. In the oil and gas sector biocorrosion is usually linked to the problem of "souring" caused by sulfate-reducing bacteria (SRB) that produce corrosive hydrogen sulfide in subsurface reservoirs and topsides facilities. To combat souring, reservoir engineers have begun turning to nitrate injection as a green biotechnology whereby sulfide removal can be catalysed by diverse sulfide-oxidising nitrate-reducing bacteria (soNRB). However, this promising technology is threatened by reports that soNRB could enhance localized corrosion through incomplete oxidation of sulfide to corrosive sulfur intermediates. It is likely that soNRB are corrosive under certain circumstances; end products of soNRB metabolism vary depending prevailing levels of sulfide (i.e., from the SRB-catalyzed reservoir souring) and nitrate (i.e., the engineering "nitrate dose" introduced to combat souring). Furthermore soNRB corrosion will depend on the specific physiological features of the particular strains present, which vary from field to field, but usually include members of the Epsilonproteobacteria - the most frequently detected bacterial phylum in 16S rRNA genomic surveys of medium temperature oil fields. A new era of biological knowledge is dawning with the advent of inexpensive, high throughput nucleic acid sequencing technologies that can now be applied to microbial genomics. New high throughput sequencing platforms are allowing unprecedented levels of interrogation of microbial communities at the DNA (genomic) and RNA (transcriptomic) levels. Engineering biology aims to harness the power of this biological "-omics" revolution by bringing these powerful tools to bear on industrial problems like biocorrosion. This project will combine genomics and transcriptomics with process measurements of soNRB metabolism and real time corrosion monitoring via linear polarization resistance. By measuring all of these variables in experimental oil field microcosms, and scaling-up to pan-industry oil field screening, a predictive understanding of corrosion linked to nitrogen and sulfur biotransformations will emerge, putting new diagnostic genomics assays in the hands of petroleum engineers. The oil industry needs green technologies like nitrate injection. This research will develop new approaches that will safeguard this promising technology by allowing nitrate-associated biocorrosion potential to be assessed in advance. This will enhance nitrate injection's ongoing successful application to be based on informed risk assessments.

  • Funder: UKRI Project Code: EP/K020404/1
    Funder Contribution: 585,535 GBP
    Partners: Thornhill Research Inc, Cardiff University, University of California, Berkely, GE Healthcare, GlaxoSmithKline, University of Toronto

    Diseases of the brain including neurological conditions, such as epilepsy, multiple sclerosis and dementia, and common psychiatric conditions such as depression and schizophrenia, have considerable personal, social and economic costs for the sufferers and their carers. Improving the tools at our disposal for quantifying brain function would help with diagnosis, choosing the right treatment for the patient and developing new, more effective, treatments. This proposal aims to develop a reliable non-invasive brain imaging method using magnetic resonance imaging (MRI) that maps, across the whole human brain with a spatial resolution of a few millimetres, the amount of oxygen that the brain is consuming. The rate of oxygen consumption, known as CMRO2, reflects neural activity and can change through disease processes. It provides a marker of disease and treatment related alterations in brain activity. Our proposed method would also map the functional characteristics of brain blood vessels whose health is crucial for the supply of oxygen and nutrients to the brain. Until recently, it has only been possible to quantitatively map the human brain's metabolic energy use through positron emission tomography (PET), which relies on radioactive tracers. The application of such measurements is limited, as in order to minimise radiation doses, it cannot be applied many times in the same patients or healthy volunteers. This hampers the repeated study of disease or treatment progression and the study of normal brain development and aging. Our proposed method would avoid the use of ionizing radiation, would be cheaper than PET and more widely available, and would expand the applications of quantified CMRO2 mapping to more centres, leading to improved treatment targeting and potential healthcare cost savings. We have performed some initial tests that show our proposed method to be feasible. It relies on mapping simultaneously the flow of blood to each part of the brain and the oxygenation of the blood leaving each part of the brain. Necessary for the measurement is the modulation of brain blood flow and oxygen levels, achieved by asking volunteers to breathe air enriched with carbon dioxide and oxygen. These procedures involve the volunteer wearing a face-mask but are safe and well tolerated. Our proposed method should yield additional information describing cerebrovascular properties compared to other recently-proposed methods. This means that it would require fewer assumptions which may be not be invalid in the diseased brain, giving our approach a wider scope of application and offering potentially richer clinical information. This proposal optimises our method to ensure it is efficient and reliable for widespread research and eventually clinical use. We propose a close collaboration between physicists developing the neuroimaging methodology and clinical academic researchers who will help us to demonstrate its clinical feasibility in two common neurological diseases, epilepsy and multiple sclerosis (MS). About 70% of the project will be methodological development to optimise our image acquisition and data analysis strategy to yield accurate and repeatable measurements within about 10 minutes of scanning. The remaining 30% of the project will validate the method in groups of epilepsy and MS patients who volunteer to help us with our research. Validation will be performed by comparison with PET, the current 'gold standard.' The project will develop and benefit from partnerships with academic and industrial researchers in the UK and internationally. In particular, the work has good potential for application in the drug development industry, a strong industrial sector in the UK, for the development of new and effective compounds to treat psychiatric and neurological disorders. This project would help maintain the UK at the forefront internationally of neuroimaging research, a position it has long held and from which it has benefitted.

  • Funder: UKRI Project Code: EP/K021699/1
    Funder Contribution: 5,782,840 GBP
    Partners: UK Society for Trenchless Technology, Stratophase Ltd, Bristol Water Plc, University of Birmingham, Leica Microsystems (United Kingdom), Globe Performance Solutions, National Grid PLC, Infotec Consulting, United Utilities, OSYS Technology Ltd...

    The surface urban transport infrastructures - our roads, cycle ways, pedestrian areas, tramways and railways - are supported by the ground, and hence the properties of the ground must control to a significant degree their structural performance. The utility services infrastructure - the pipes and cables that deliver utility services to our homes and which supports urban living - is usually buried beneath our urban streets, that is it lies below the surface transport infrastructure (usually roads and paved pedestrian areas). It follows that streetworks to install, replace, repair or maintain these utility service pipes or cables using traditional trench excavations will disrupt traffic and people movement, and will often significantly damage the surface transport infrastructure and the ground on which it bears. It is clear, therefore, that the ground and physical (i.e. utility service and surface transport) infrastructures exist according to a symbiotic relationship: intervene physically in one, and the others are almost inevitably affected in some way, either immediately or in the future. Moreover the physical condition of the pipes and cables, of the ground and of the overlying road structure, is consequently of crucial importance in determining the nature and severity of the impacts that streetworks cause. Assessing the Underworld (ATU) aims to use geophysical sensors deployed both on the surface and inside water pipes to determine remotely (that is, without excavation) the condition of these urban assets. ATU builds on the highly successful Mapping the Underworld (MTU) project funded by EPSRC's first IDEAS Factory (or sandpit) and supported by many industry partners. The MTU sandpit brought together a team that has grown to be acknowledged as international leaders in this field. ATU introduces leaders in climate change, infrastructure policy, engineering sustainability and pipeline systems to the MTU team to take the research into a new sphere of influence as part of a 25-year vision to make streetworks more sustainable. ATU proposes to develop the geophysical sensors created in MTU to look for different targets: indications that the buried pipes and cables are showing signs of degradation or failure, indications that the road structure is showing signs of degradation (e.g. cracking, delamination or wetting) and indications that the ground has properties different to unaltered ground (e.g. wetted or eroded by leaking pipes, loosened by local trench excavations, wetted by water ingress through cracked road structures). For example, a deteriorated (fractured, laterally displaced, corroded or holed) pipe will give a different response to the geophysical sensors than a pristine pipe, while wetting of the adjacent soil or voids created by local erosion due to leakage from a water-bearing pipe will result in a different ground response to unaltered natural soil or fill. Similarly a deteriorated road (with vertical cracks, or with a wetted foundation) will give a different response to intact, coherent bound layers sitting on a properly drained foundation. Taking the information provided by the geophysical sensors and combining it with records for the pipes, cables and roads, and introducing deterioration models for these physical infrastructures knowing their age and recorded condition (where this information is available), will allow a means of predicting how they will react if a trench is dug in a particular road. In some cases alternative construction techniques could avert serious damage (e.g. water pipe bursts, road structural failure requiring complete reconstruction) or injury (gas pipe busts). Making this information available will be achieved by creating a Decision Support System for streetworks engineers. Finally, the full impacts to the economy, society and environment of streetworks will be modelled in a sustainability assessment framework so that the wider impacts of the works are made clear.

  • Funder: UKRI Project Code: EP/K026658/1
    Funder Contribution: 372,621 GBP
    Partners: European Thermodynamics (United Kingdom), Caterpillar UK Ltd, Ricardo UK Limited, JM, Loughborough University, Dana Canada Corporation

    The internal combustion engine which is in everyday use in a wide variety of applications remains one of the most cost effective means of generating power. A typical engine however loses substantial amounts of energy in its normal operation and there is clear potential to utilise this energy. The largest flow is in the exhaust system of the vehicle, and it is here that the proposed research is focussed. The main objective of the project is the realisation of an efficient method of energy recovery using a thermoelectric generator and utilising a new type of material known as a skutterudite. By adopting the same internal structure, skutterudites simulate a naturally occurring mineral which has the vital properties of low thermal conductivity with low electrical resistance. The principal advantage of these materials is their potential for cost reduction by utilising low cost metals in their structure. A second and important advantage is the future potential for novel manufacturing techniques in which the active elements of the thermoelectric generator are made using additive methods to build up the kind of complex shapes that are required. The project brings together three universities that can cover the range of capabilities from the chemistry of materials through to systems integration methods. The Heriot-Watt team will synthesise new materials using progressively lower cost materials to demonstrate that the required thermoelectric performance can be obtained using low cost materials. The Cardiff team will integrate modules, incorporating protective coatings to ensure the durability of the generator. At Loughborough, the scope to integrate thermo-electric (TE) generators with other functions such as after-treatment will be explored. The Loughborough team will work with the Cardiff team to identify novel methods of integrating the TE modules into a heat exchange device, regarding the requirements imposed by different types of engine. The project concludes with the practical demonstration of TE generators and a portfolio of simulation results that demonstrate how the cost path and the path to levels of commercial performance will be realised.

  • Funder: UKRI Project Code: EP/K015796/1
    Funder Contribution: 248,496 GBP
    Partners: Lancaster University, UBC, Johns Hopkins University Sch of Medicine, Dementias Neurodegen Network DeNDRoN, MICROSOFT RESEARCH LIMITED

    SAMS is a proposed 3-year project to that will investigate the potential for novel data and text mining techniques for detecting subtle signs of Cognitive Dysfunction that may indicate the early stages of Alzheimer's disease. Promoting self-awareness of change in cognitive function is will investigate the potential for novel data and text mining techniques for detecting subtle signs of change in cognition that may indicate the early stages of Alzheimer's disease. Promoting self-awareness of change in cognitive function is a key step in encouraging people to self-refer for clinical evaluation. A key motivation for SAMS, therefore, is to provide a non-invasive tool that helps develop such self-awareness. An increasing number of older people, the group most at risk of cognitive dysfunction and dementia, regularly use the Internet to keep in touch with their families, particularly grandchildren. This Internet activity presents an opportunity to harness rich, routinely available information that may contain indications of changes in the linguistic, executive and motor speed abilities in older people. Development work is needed to develop the software to harness this opportunity, to establish the optimal thresholds for flagging up important changes in cognition and the optimal methods for feeding this information back to individuals. SAMS will validate thresholds by examining changes in performance in people with established cognitive dysfunction and mild Alzheimer's disease and begin to explore the potential for technology-enhanced detection of early cognitive dysfunction. Patterns of computer use and content analysis of e-mails, such as forgetting topics, expressions of concern, emotion, etc., will be analysed and coupled to feedback mechanisms to enhance users' cognitive self awareness, empowering them self administer follow up tests and decide when to self refer themselves for expert medical advice. Tackling cognitive change detection requires the novel pooling of knowledge and integration of techniques from different sub-disciplines within a Computer Science. In addition to developing techniques for MCI detection and supporting self-referral, an explicit goal of the research is to develop a generic sense making and user-centred feedback architecture. This could be applied to a wide range of problems where interpreting computer use may be appropriate, e.g. mental health, social loneliness, privacy and social exploitation.

  • Funder: UKRI Project Code: EP/K037161/1
    Funder Contribution: 489,871 GBP
    Partners: Airbus, LR IMEA, Bombardier Inc, University of Southampton

    Noise and vibration are important performance aspects in many mechanical systems. High noise and vibration levels can be detrimental to structures (e.g. causing damage) and to the human operators (e.g. causing fatigue or injury). Thus, it is important to be able to understand how structures vibrate and emit noise, i.e., their vibroacoustic behavior. Traditionally, engineers would try to describe the vibroacoustics using analytical methods. However, these are only possible for very simple structures. Structures that engineers confront in the aerospace, railway or maritime sectors are often made of composite panels that are connected together using complicated structural joints. The analysis of the vibroacoustics of such complex built-up structures cannot be performed analytically. Over the years, researchers have developed numerical techniques to solve this problem. Element-based methods (such as the finite element method) are well-developed and well-established methods with many commercial/in-house codes that can be used. However, aerospace, railway and maritime structures are relatively large. For example, a typical railway car can be modelled using the finite element method up to 500 Hz. Above this frequency, the size of the finite element model becomes too large, impractical and the associated computational cost becomes prohibitive. However, the audio frequency range is 20 Hz-20 kHz. At high frequency (above 10 kHz), the railway car can be modelled using energy-based methods such as the statistical energy analysis method. Energy-based statistical methods are valuable, but less well-established than element-based methods. The railway car example points to a frequency gap, indeed a mid-frequency gap, where neither element-based nor energy-based methods can be used. I am proposing to use wave methods to bridge the mid-frequency gap and to further strengthen energy methods. Waves provide a unifying, intuitive approach to vibroacoustics. The computational cost of a wave model is substantially small (especially when compared to a full finite element model), and the wave properties of structures can be obtained by post processing the finite element model of a small segment of an arbitrarily large structure. Thus, the goal of this programme is to develop a wave-based toolbox for modelling the vibroacoustics complex built-up structures. Industrial examples from the aerospace, railway and maritime sectors will be used to demonstrate the efficiency and effectiveness of the developed methods.

  • Funder: UKRI Project Code: EP/K034383/1
    Funder Contribution: 2,246,110 GBP
    Partners: AIM, University of Warwick, Abdus Salam ICTP, University of Waterloo (Canada), University of Rome

    L-functions and modular forms are fundamental mathematical objects that encode much of our knowledge of contemporary number theory. They form part of a web of interconnected objects, the understanding of which in the most basic cases lies at the foundations of much of modern mathematics. A spectacular example is Wiles' proof of Fermat's Last Theorem, which was an application of a fundamental "modularity" link between L-functions, modular forms and elliptic curves. This project will greatly extend and generalize such connections, both theoretically and computationally. The research vision inspiring our programme can be summarised as: "Breaking the boundaries of classical L-functions and modular forms, and exploring their applications to 21st-century mathematics, physics, and computer science". Our guiding goal is to push forward both theoretical and algorithmic developments, in order to develop L-functions and modular forms far beyond current capabilities. This programme will systematically develop an extensive catalogue of number theoretic objects, and will make this information available through an integrated online resource that will become an indispensable tool for the world's research community. L-functions are to pure mathematics what fundamental particles are to physics: their interaction reveal fundamental truths. To continue the analogy, computers are to number theorists what colliders are to particle physicists. Aside from their established role as empirical "testers" for conjectures and theories, experiments can often throw up quite unexpected phenomena which go on to reshape modern theory. Our programme will establish a major database and encyclopedia of knowledge about L-functions and related objects, which will play a role analogous to that of the LHC for the scientists at CERN. Both are at the threshold of tantalising glimpses into completely uncharted territories: higher degree L-functions for us and the Higgs boson for them. Theoretical and computational work on higher degree L-functions has only started to make substantial progress in the past few years. There do not currently exist efficient methods to work with these, and rigorous computations with them are not yet possible. Neither is there yet an explicit description of all ways in which degree 3 L-functions can arise. We will address these facets in our research programme: both algorithmic development and theoretical classification. As well as having theoretical applications to modularity relationships as in Wiles' proof, detailed knowledge of L-functions has more far-reaching implications. Collections of L-functions have statistical properties which first arose in theoretical physics. This surprising connection, which has witnessed substantial developments led by researchers in Bristol, has fundamental predictive power in number theory; the synergy will be vastly extended in this programme. In another strand, number theory plays an increasingly vital role in computing and communications, as evidenced by its striking applications to both cryptography and coding theory. The Riemann Hypothesis (one of the Clay Mathematics Million Dollar Millennium Problems) concerns the distribution of prime numbers, and the correctness of the best algorithms for testing large prime numbers depend on the truth of a generalised version of this 150-year-old unsolved problem. These are algorithms which are used by public-key cryptosystems that everyone who uses the Internet relies on daily, and that underpin our digital economy. Our programme involves the creation of a huge amount of data about a wide range of modular forms and L-functions, which will far surpass in range and depth anything computed before in this area. This in turn will be used to analyse some of the most famous outstanding problems in mathematics, including the Riemann Hypothesis and another Clay problem, the Birch and Swinnerton-Dyer conjecture.

  • Funder: UKRI Project Code: EP/H00324X/2
    Funder Contribution: 275,478 GBP
    Partners: UBC, National High Magnetic Field Laboratory, University of Warwick, University of Cambridge, ANL, EWU

    Resistance is futile: lightbulbs and heaters aside, the majority of electronic components are at their most efficient when their electrical resistance is minimized. In the present climate, with energy sustainability regularly topping the international agenda, reducing the power lost in conducting devices or transmission lines is of worldwide importance. Research into the nature of novel conducting materials is hence vital to secure the global energy future.Superconductivity, the phenomenon of zero electrical resistance which occurs below a critical temperature in certain materials, remains inadequately explained. At present, these critical temperatures are typically very low, less than 140 Kelvin (-133 Celsius), but a more complete understanding of what causes the superconducting state to form could result in the design of materials that display superconductivity at the enhanced temperatures required for mass technological exploitation. Unfortunately, it is the very materials which are most likely to lead us to this end, the so-called unconventional superconductors, that are the least understood. In such materials, the superconducting state appears to be in competition with at least two other phases of matter: magnetism and normal, metallic conductivity. A delicate balance governs which is the dominant phase at low temperatures; the ground-state. By making slight adjustments to the composition of the materials or by applying moderate pressures certain interactions between the electrons in the compound can be strengthened at the expense of others causing the balance to tip in favour of a particular ground-state. The technicalities of how to do this are relatively well-known. What remains to be explained is why it happens, what it is that occurs at the vital tipping point where the superconductivity wins out over the magnetic or the metallic phases - in short, exactly what stabilizes the unconventional superconducting state? It is this question that the proposed project seeks to answer. I will use magnetic fields to explore the ground-states exhibited by three families of unconventional superconductor: the famous cuprate superconductors (whose discovery in the 1980s revolutionized the field of superconductivity and which remain the record-holders for the highest critical temperature); some recently discovered superconductors based on the most magnetic of atoms - iron (the discovery of these new materials in the spring of 2008 came as somewhat of a surprise, magnetism often being thought as competing with superconductivity); and a family of material based on superconducting layers of organic molecules. I propose to measure the strength of the interactions that are responsible for the magnetic and electronic properties of these materials as the systems are pushed, using applied pressure, through the tipping point at which the superconductivity becomes dominant. In particular, the electronic interactions in layered materials like those considered here can only be reliably and completely determined via a technique known as angle-dependent magnetoresistance. This technique remains to be applied to most unconventional superconductors, particularly at elevated pressures, mostly likely because it is experimentally challenging and familiar only to a handful of researchers. However, the rewards of performing such experiments are a far greater insight into what changes in interactions occur at the very edge of the superconducting state. Chasing the mechanism responsible for stabilizing unconventional superconductivity is an ambitious aim, and many traditional experimental techniques have proved inadquate. It is becoming clear, in the light of recent advances in the field, that the route to success lies in subjecting high-quality samples to the most extreme probes available, a combination of high magnetic fields and high applied pressures.