Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
10 Projects

  • Canada
  • UK Research and Innovation
  • UKRI|NERC
  • 2013

  • Funder: UKRI Project Code: NE/K005421/1
    Funder Contribution: 337,728 GBP

    Variations in sea level have a great environmental impact. They modulate coastal deposition, erosion and morphology, regulate heat and salt fluxes in estuaries, bays and ground waters, and control the dynamics of coastal ecosystems. Sea level variability has importance for coastal navigation, the building of coastal infrastructure, and the management of waste. The challenges of measuring, understanding and predicting sea level variations take particular relevance within the backdrop of global sea level rise, which might lead to the displacement of hundreds of millions of people by the end of this century. Sea level measurement relies primarily on the use of coastal tide gauges and satellite altimetry. Tide gauges provide sea levels at fine time resolutions (up to one second), but collect data only in coastal areas, and are irregularly distributed, with large gaps in the southern hemisphere and at high latitudes. Satellite altimetry, in contrast, has poor time resolution (ten days or longer), but provides near global coverage at moderate spatial resolutions (10-to-100 kilometres). Altimetric sea level products are problematic near the coast for reasons such as uncertainties in applying sea state bias corrections, errors in coastal tidal models, and large geoid gradients. The complicated shoreline geometry means that the raw altimeter data have to either undergo special transformations to provide more reliable measurements of sea level or be rejected. Developments in GPS measurements from buoys are now making it possible to determine sea surface heights with accuracy comparable to that of altimetry. In combination with coastal tide gauges, GPS buoys could be used as the nodes of a global sea level monitoring network extending beyond the coast. However, GPS buoys have several downsides. They are difficult and expensive to deploy, maintain, and recover, and, like conventional tide gauges, provide time series only at individual points in the ocean. This proposal focuses on the development of a unique system that overcomes these shortcomings. We propose a technology-led project to integrate Global Navigation Satellite Systems (GNSS i.e. encompassing GPS, GLONASS and, possibly, Galileo) technology with a state-of-the-art, unmanned surface vehicle: a Wave Glider. The glider farms the ocean wave field for propulsion, uses solar power to run on board equipment, and uses satellite communications for remote navigation and data transmission. A Wave Glider equipped with a high-accuracy GNSS receiver and data logger is effectively a fully autonomous, mobile, floating tide gauge. Missions and routes can be preprogrammed as well as changed remotely. Because the glider can be launched and retrieved from land or from a small boat, the costs associated with deployment, maintenance and recovery of the GNSS Wave Glider are comparatively small. GNSS Wave Glider technology promises a level of versatility well beyond that of existing ways of measuring sea levels. Potential applications of a GNSS Wave Glider include: 1) measurement of mean sea level and monitoring of sea level variations worldwide, 2) linking of offshore and onshore vertical datums, 3) calibration of satellite altimetry, notably in support of current efforts to reinterpret existing altimetric data near the coast, but also in remote and difficult to access areas, 4) determination of regional geoid variations, 5) ocean model improvement. The main thrust of this project is to integrate a state-of-the-art, geodetic-grade GNSS receiver and logging system with a Wave Glider recently acquired by NOC to create a mobile and autonomous GNSS-based tide gauge. By the end of the project, a demonstrator GNSS Wave Glider will be available for use by NOC and the UK marine community. The system performance will be validated against tide gauge data. Further tests will involve the use of the GNSS Wave Glider to calibrate sea surface heights and significant wave heights from Cryosat-2.

    more_vert
  • Funder: UKRI Project Code: NE/L001764/1
    Funder Contribution: 77,614 GBP

    Selenium (Se) and Tellurium (Te) are scarce (semi)metallic elements usually recovered as by-products of the chemical extraction of other metals. The proposal will exploit close relationships between these elements and organic materials to target additional resources, and extract resources in a more sustainable, environmentally sensitive manner. Se/Te are most concentrated in rocks containing organic matter (e.g. coals, carbon-rich shales, sandstones containing oil residues or coaly matter). We also know that microbial (bacterial) activity can concentrate Se/Te. We seek to use that knowledge to predict previously unrecognized concentrations of Se/Te by study of metal sulfide ores which are known to have been formed by microbial sulfate reduction, on the basis that these microbes could have also engendered Se/Te concentration. More significantly, we will try to advance our knowledge of how microbes interact with Se/Te in rocks and soil, to develop a strategy for the microbial concentration of Se/Te on a valuable scale. To achieve this the project combines interdisciplinary expertise on Se/Te from geology, soil science, chemistry and microbiology. The catalyst stage involves data gathering, and pilot sampling from two field sites, one in SW Ireland where some of the most Se-rich soils in the world occur, and in Scotland where a gold mine and its environs have elevated levels of Te, and the Te needs to be exploited to ensure financial viability. We have the support of Scotgold Resources, who own the gold mine, and Stantec, an international company whose portfolio includes management of metal resources.

    visibility8
    visibilityviews8
    downloaddownloads69
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/J023094/1
    Funder Contribution: 402,095 GBP

    Deep-sea sediments form a major reservoir in the global carbon (C) cycle and C burial in these sediments constitutes a major process that sequesters C on geological time scales. Organic matter sinking from surface waters is the main food source for deep-sea organisms, and their feeding and foraging activities control whether this organic C is recycled into the water column or buried in sediments ('carbon sequestration'). Food supply to the deep-sea benthos is reliant on phytoplankton growth in the euphotic zone, and changes in community composition, export flux or timing of bloom events will directly affect the supply to and turnover of POC at the seafloor and, subsequently, C sequestration. However, due to the remoteness of the deep-sea floor, our knowledge of the interplay between organic matter characteristics, benthic biodiversity and the early diagenesis of POC in the deep sea is very limited, and we can therefore neither reliably assess nor predict the consequences of climate change for this important ecosystem service. The detailed study of benthic C cycling in areas of strong natural fluctuations in POC flux characteristics, and/or pronounced climate-induced change in the pelagic environment, seems a promising way to gain urgently needed information on the potential impact of climate change on the cycling or burial of C in deep-sea sediments, while at the same time improving our understanding of the interplay between POM characteristics and benthic communities, and its function in the early diagenesis of POM. Sea ice is a unique feature of polar marine ecosystems and the fact that small temperature differences can have large effects on the extent and thickness of this sea ice makes polar marine ecosystems particularly sensitive to climate change. Indeed, major ecosystem shifts related to retreating sea ice have been reported from both the Arctic and Antarctic. Ice algae account for up to 25 % of the primary production (PP) in ice covered areas on the deep Arctic shelf, and even more in the Arctic Basin, and thus are likely to form an integral part of the diet of deep-sea organisms. Moreover, ice algal blooms differ considerably from phytoplankton in terms of timing and distribution, thus providing higher organisms with food when and where other food is scarce. Ice algae also contain very high concentrations of so-called "micronutrients", essential substances that many marine organisms can not synthesize themselves. The retreat of sea ice and subsequent loss of ice algae as food source is thus likely to significantly impact on deep-sea food webs and ecosystems. However, despite much speculation, very little information is available on the importance of ice algae as food for benthic organisms. We therefore propose to investigate the potential consequences of a climate-induced loss of ice algae (and possible shift to phytoplankton) as a food source for Arctic deep-sea food webs via two different approaches: A. Ice algae and phytoplankton differ in their bulk Carbon isotope signatures, as well as in the Carbon isotope signatures of certain essential fatty acids. We will thus use this difference in isotopic signature to trace the uptake of ice algal and phytoplankton biomass by benthic fauna. B. A series of in situ tracer experiments: we will label both ice algae and planktic algae with a tracer, add them to sediment cores obtained from the seafloor (so-called 'mesocosms'), and subsequently follow whether and how they are metabolized by the deep-sea organisms. This work will be carried out in the Canadian Arctic in collaboration with Professor Philippe Archabault from the University of Quebec, during field campaigns in the Gulf of St. Lawrence and the Beaufort Sea.

    visibility55
    visibilityviews55
    downloaddownloads46
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/K000284/2
    Funder Contribution: 196,397 GBP

    The Arctic is undergoing rapid climatic change, with dramatic consequences for the 'Frozen World' (the 'cryosphere'), including reductions in the depth, extent and duration of sea ice, and seasonal snow cover on land, retreat of ice sheets/glaciers, and melting of permafrost ("ground that remains at or below 0 degrees C for at least two consecutive years"). This is important not only for local and regional ecosystems and human communities, but also for the functioning of the entire earth system. Evidence is growing that organic matter frozen in permafrost soils (often for many millennia) is now thawing, making it available for decomposition by soil organisms, with the release of carbon dioxide (CO2) and methane (CH4), both greenhouse gases (GHGs), as by-products. A major concern now is that, because permafrost soils contain 1672 petagrams (1 Pg = 1 billion tonnes) of organic carbon (C), which is about 50% of the total global below-ground pool of organic C, and permafrost underlies ~ 25% (23 million km2) of the N hemisphere land surface, a melting-induced release of GHGs to the atmosphere from permafrost soils could result in a major acceleration of global warming. This is called a 'positive biogeochemical feedback' on global change; in other words, an unintentional side-effect in the global C cycle and climate system. Unfortunately, the interacting biological, chemical and physical controls on CO2 and CH4 emissions from permafrost (and melting permafrost) environments to the atmosphere are the subject of much speculation because the scientific community does not know enough about the interactions between C and water cycling in permafrost systems. Warmer and drier soils may release more CO2, while warmer/wetter soils might release more CH4. Permafrost thawing also causes changes in the way water flows though the landscape (because frozen ground if often impermeable to water), and some areas may become drier, while others wetter. How the relative proportions of CO2 and CH4 emissions change, and their absolute amount, is critical for the overall 'global warming potential' (GWP) because these two gases have different potency as GHGs. Release of C from soils into freshwaters also needs to be taken into account because down-stream 'de-gassing' and decomposition of organic materials also influences releases of CO2 and CH4 from freshwater, or delivery of C to lakes/oceans. All-in-all, predicting the GWP of permafrost regions is scientifically challenging, and the interactions between the water (hydrological) and C cycles are poorly known. In this project we recognise the key role that hydrological processes play in landscape-scale C fluxes in arctic and boreal regions. In permafrost catchments in NW Canada (including areas where permafrost is known to be thawing) we will measure the capture of C from the atmosphere (through photosynthesis), its distribution in plants and soils, and the biological, physical and chemical controls of C transport and delivery from soils to freshwaters, and ultimately to the atmosphere as CO2 and CH4. In essence we wish to 'close the C cycle'. Field-based measurements of key processes in the water and C cycles, including geochemical tracer and state-of-the-art C, hydrogen and oxygen isotope approaches, will be linked by computer modelling. The project team, together with partners in Canada, the US and UK, is in a unique position to link the water and C cycles in permafrost environments, and we will deliver essential scientific knowledge on the potential consequences of climate warming, and permafrost thawing, for GHG emissions from northern high latitudes. Both for local peoples directly dependent on arctic tundra/boreal forest ecosystems for their livelihoods and cultural identity, and for the global community who must respond to, and anticipate, potential consequences of climate and environmental change, this project will represent a significant step forward in understanding/predictive capacity.

    more_vert
  • Funder: UKRI Project Code: NE/L000318/1
    Funder Contribution: 620,481 GBP

    For all sources of radioactivity, radiological risk assessments are essential for safeguarding human and environmental health. But assessments often have to rely upon simplistic assumptions, such as the use of simple ratios in risk calculations which combine many processes. This pragmatic approach has largely arisen due to the lack of scientific knowledge and/or data in key areas. The resultant uncertainty has been taken into account through conservative approaches to radiological risk assessment which may tend to overestimate risk. Uncertainty arises at all stages of the assessment process from the estimation of transfer to human foodstuffs and wildlife, exposure and risk. Reducing uncertainty is important as it relates directly to scientific credibility, which will always be open to challenge given the highly sensitive nature of radiological risk assessment in society. We propose an integrated, multi-disciplinary, programme to assess and reduce the uncertainty associated with radiological risk assessment to protect human health and the environment. At the same time we will contribute to building the capacity needed to ensure that the UK rebuilds and maintains expertise in environmental radioactivity into the future. Our project has four major and highly inter-related components to address the key goal of RATE to rebuild UK capacity and make a major contribution to enhancing environmental protection and safeguarding human health. The first component will study how the biological availability of radionuclides varies in soils over time. We will investigate if short-term measurements (collected in three year controlled experiments) can be used to predict the long-term availability of radionuclides in soils by testing our models in the Chernobyl exclusion zone. The second component will apply the concepts of 'phylogeny' and 'ionomics' to characterise radionuclide uptake by plants and other organisms. These approaches, and statistical modelling methods, are increasingly applied to describe uptake of a range of elements in plant nutrition, and we are pioneering their use for studying radionuclide uptake in other organisms and human foods. A particularly exciting aspect of the approach is the possibility to make predictions for any plant or animal. This is of great value as it is impossible to measure uptake for all wildlife, crops and farm animals. The third component of the work will extend our efforts to improve the quantification of radiation exposure and understanding of resultant biological effects by investigating the underlying mechanisms involved. A key aim is to see whether what we know from experiments on animals and plants in the laboratory is a good representation of what happens in the real world: some scientists believe that animals in the natural environment are more susceptible to radiation than laboratory animals: we need to test this to have confidence in our risk assessments. Together these studies will enable us to reduce and better quantify the uncertainties associated with radiological risk assessment. By training a cohort of PDRA and PhDs our fourth component will help to renew UK capacity in environmental radioactivity by providing trained, experienced researchers who are well networked within the UK and internationally through the contacts of the investigators. Our students will be trained in a wide range of essential skills through their controlled laboratory studies and working in contaminated environments. They will benefit from being a member of a multidisciplinary team and opportunities to take placements with our beneficiaries and extensive range of project partners. The outputs of the project will benefit governmental and non-governmental organisations with responsibility for assessing the risks to humans and wildlife posed by environmental radioactivity. It will also make a major contribution to improved scientific and public confidence in the outcomes of environmental safety assessments.

    visibility106
    visibilityviews106
    downloaddownloads175
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/K004999/1
    Funder Contribution: 543,907 GBP

    Recent work has shown that the single largest unknown in assessing the contribution of mountain glaciers and ice caps to contemporary global sea-level rise is the rate of mass loss by iceberg calving from large Arctic ice caps (Radic and Hock, 2011, Nature Geoscience). The largest ice caps in the Arctic, and indeed the largest ice masses outside the Antarctic and Greenland ice sheets, are those of the Canadian Arctic islands. Importantly, new findings indicate that, for 2004-2009, a sharp increase in the rate of mass loss also makes the Canadian Arctic Archipelago the single largest contributor to global sea-level rise outside Greenland and Antarctica (Gardner et al., 2011, Nature). Each of these large Canadian ice caps is divided into a series of drainage basins that flow into fjords via narrow, heavily crevassed fast-flowing outlet glaciers which dissect the islands' fringing mountains. A major question for scientists and policymakers is, therefore, how these ice caps will continue to react to the temperature rises that are predicted for the 21st century, noting that Atmospheric General Circulation Models predict that temperature rise will be significantly greater in the Arctic than at lower latitudes. Numerical modelling of large ice masses is constrained, however, by a lack of knowledge of the geometry and nature of the bed of these outlet glaciers. We will acquire geophysical data from ice-cap outlet glaciers draining the large ice caps on Ellesmere and Devon islands in the Canadian Arctic using an airborne ice-penetrating radar, laser altimeter, gravimeter, magnetometer and GPS instruments. We will focus on three key areas of each drainage basin: the heavily crevassed fast-flowing outlet glaciers themselves, an upper transition zone between the ice-cap interior and the narrow outlet glaciers; and the grounding zone marking the transition to floating ice tongues at the head of some Canadian High-Arctic fjords. Our scientific objectives are: (a) to determine ice-surface and subglacial-bed elevation; (b) to characterize the substrate, in particular whether it is bedrock or deformable sediment; (c) to establish the distribution of subglacial melting; (d) to reveal basal character changes at the transition zones between inland ice, outlet glaciers and the grounding zone; (e) to provide new estimates of outlet glacier calving fluxes and their variability on up to decadal timescales. This information, integrated with satellite datasets on outlet-glacier surface motion and our earlier observations of the regional-scale geometry of these ice caps, will provide fundamental boundary conditions for the numerical modelling of these ice caps and, thus, how they may respond to atmospheric and ocean warming over the coming decades, with implications for sea-level rise.

    more_vert
  • Funder: UKRI Project Code: NE/L002280/1
    Funder Contribution: 96,635 GBP

    Rare Earth Elements (REE) are used in many low carbon technologies, ranging from low energy lighting to permanent magnets in large wind turbines and hybrid cars. They are almost ubiquitous: in every smartphone and computer. Yet 97% of World supply comes from a few localities in China. Rare earth prices are volatile and subject to political control, and but substitute materials are difficult to design. The most problematic REEs to source are neodymium and the higher atomic number 'heavy' rare earths - a group dubbed the 'critical rare earths'. However, with many potential rare earth ore deposits in a wide variety of rocks, there is no underlying reason why rare earths should not be readily and relatively cheaply available. The challenge is to find and extract rare earths from the right locations in the most environmentally friendly, cost efficient manner to give a secure, reasonably priced, responsibly sourced supply. In this project, the UK's geological research experts in rare earth ore deposits team up with leaders in (a) geological fluid compositions and modelling, (b) using fundamental physics and chemistry of minerals to model processes from first principles and (c) materials engineering expertise in extractive metallurgy. This community brings expertise in carbonatites and alkaline rocks, some of the Earth's most extreme rock compositions, which comprise the majority of active exploration projects. The UK has a wealth of experience of study of economic deposits of rare earths (including the World's largest deposit at Bayan Obo in China) which will be harnessed. The team identify that a key issue is to understand the conditions that concentrate heavy rare earths but create deposits free from thorium and uranium that create radioactive tailings. Results so far from alkaline rocks and carbonatites are contradictory. A workshop will bring together the project team and partners, including a leading Canadian researcher on rare earth mobility, to debate the results and design experiments and modelling that can be done in the UK to solve this problem. Understanding, and then emulating how REE deposits form, may provide us with the best clues to extract REEs from their ores. One important route is to understand the clay-rich deposits in China which provide most of the World's heavy rare earths; they are simple to mine, not radioactive, and need little energy to process. The workshop will consider how these deposits form, how we can use our experimental and modelling expertise to understand them better and predict where companies should explore for them. The other main problem, restricting development of almost all rare earth projects, is the difficulty of efficient separation of rare earth ore minerals from each other and then extraction of the elements from those ores. A work shop on geometallurgy (linking geology through mining, processing, extractive metallurgy and behaviour in the environment) will be used to explore how geological knowledge can be used (a) to predict the processing and environmental characteristics of different types of ores and (b) to see if any new potential processing methods might be tried, taking advantage of fundamental mineralogical properties. The two workshops link geology to metallurgy, using one to inform the other. This project will form the basis for an international collaborative consortium bid to NERC. It will also catalyse a long-term UK multidisciplinary network linking rare earth researchers to users, and promote the profile of the UK in this world-wide important field. Before the team design the research programme, they will consult academic colleagues working on new applications of rare earths and rare earth recycling, plus exploration companies, users further along the up the supply chain and policy makers. This will ensure that the proposals developed have maximum impact on future supply chain security.

    visibility38
    visibilityviews38
    downloaddownloads122
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/K005243/1
    Funder Contribution: 443,723 GBP

    The shift from hunting and gathering to an agricultural way of life was one of the most profound events in the history of our species and one which continues to impact our existence today. Understanding this process is key to understanding the origins and rise of human civilization. Despite decades of study, however, fundamental questions regarding why, where and how it occurred remain largely unanswered. Such a fundamental change in human existence could not have been possible without the domestication of selected animals and plants. The dog is crucial in this story since it was not only the first ever domestic animal, but also the only animal to be domesticated by hunter-gatherers several thousand years before the appearance of farmers. The bones and teeth of early domestic dogs and their wild wolf ancestors hold important clues to our understanding of how, where and when humans and wild animals began the relationship we still depend upon today. These remains have been recovered from as early as 15,000 years ago in numerous archaeological sites across Eurasia suggesting that dogs were either domesticated independently on several occasions across the Old World, or that dogs were domesticated just once and subsequently spreading with late Stone Age hunter gatherers across the Eurasian continent and into North America. There are also those who suggest that wolves were involved in an earlier, failed domestication experiment by Ice Age Palaeolithic hunters about 32,000 years ago. Despite the fact that we generally know the timing and locations of the domestication of all the other farmyard animals, we still know very little for certain about the origins of our most iconic domestic animal. New scientific techniques that include the combination of genetics and statistical analyses of the shapes of ancient bones and teeth are beginning to provide unique insights into the biology of the domestication process itself, as well as new ways of tracking the spread of humans and their domestic animals around the globe. By employing these techniques we will be able to observe the variation that existed in early wolf populations at different levels of biological organization, identify diagnostic signatures that pinpoint which ancestral wolf populations were involved in early dog domestication, reveal the shape (and possibly the genetic) signatures specifically linked to the domestication process and track those signatures through time and space. We have used this combined approach successfully in our previous research enabling us to definitively unravel the complex story of pig domestication in both Europe and the Far East. We have shown that pigs were domesticated multiple times and in multiple places across Eurasia, and the fine-scale resolution of the data we have generated has also allowed us to reveal the migration routes pigs took with early farmers across Europe and into the Pacific. By applying this successful research model to ancient dogs and wolves, we will gain much deeper insight into the fundamental questions that still surround the story of dog domestication.

    visibility380
    visibilityviews380
    downloaddownloads1,790
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/J015962/1
    Funder Contribution: 150,546 GBP

    Forecasting the weather from days to two weeks in advance has typically focused on the troposphere, the layer of the atmosphere closest to the ground. A typical weather forecast first attempts to estimate what the atmosphere is like now, and then extrapolates forward in time, using a complex model of the atmosphere based on the basic physical laws of motion. Over the last 15 years, evidence has been growing that different parts of the atmosphere and Earth system can also be exploited to improve weather forecasts. One of these regions is the stratosphere, the layer directly above the troposphere. Because, temperatures increase with height in the stratosphere, winds and weather systems are quite different, and a distinct community of scientific researchers who study the stratosphere exists around the world. Through the work of this community, many weather forecasting centres have been encouraged to look to the stratosphere to improve their weather forecasts and have been modifying their weather forecasting models accordingly. What has been missing, however, is a concerted effort to understand how best to make use of the stratosphere to improve weather forecasts and to determine how much weather forecasts might benefit. This proposal will fund a new international scientific network which will bring scientists from around the world together to study the stratosphere and how it might be used to improve weather forecasts. The network is made up of scientists from universities and weather forecasting centres around the world and is supported by two other international scientific research bodies. The network will allow scientists to come together to discuss current research in this area and to plan and carry out a new experiment which will compare the stratosphere and its impact on weather forecasts in their weather forecasting models. At the end of the research project, the network members will work together to produce a report which will provide guidance to all weather forecasting centres on the use of the stratosphere for weather forecasting.

    more_vert
  • Funder: UKRI Project Code: NE/K010875/1
    Funder Contribution: 2,188,100 GBP

    UK-OSNAP: Summary What is climate? The sun's energy is constantly heating the Earth in equatorial regions, while in the Arctic and Antarctic the Earth is frozen and constantly losing heat. Ocean currents and atmospheric weather together move heat from the equator towards the poles to keep the Earth's regional temperatures in balance. So climate is simply the heat moved by ocean currents and by the weather. Earth's climate is warming: the average temperature of the Earth is rising at a rate of about 0.75 degrees Centigrade per hundred years, caused by carbon dioxide in the atmosphere trapping heat that is normally lost to space. Can we forecast how climate might change in the future? There is an old adage that rings true: "Climate is what you expect; weather is what you get". Hot weather in one summer does not tell us that climate is changing because the weather is so variable day-to-day and even year-to-year. We need to average over all the weather for a long time to decide if the climate is changing. We would like to know if the climate is changing before our descendants face the consequences, and that is where our project comes in. The ultimate ambition of climate scientists is nothing less than forecasting climate up to 10 years in advance. Is this possible? After all we know weather forecasts become somewhat unreliable after three to five days. The answer is yes because of the ocean. Slow and deep currents give the ocean a memory from years to hundreds of years, and the ocean passes this memory onto the climate. If we know the condition of the ocean now, then we have a good chance of understanding how this will affect the climate in years to come. We have set ourselves a huge task, but will be helped by colleagues in the US, Canada, Germany, Netherlands, Faroe Islands, Iceland, Denmark and Scotland. We will continuously measure the ocean circulation from Canada to Greenland to Scotland (the subpolar North Atlantic Ocean). This has never been attempted before. We have chosen the North Atlantic because the circulation here is important for the whole of Earth's climate. This is because in the high latitudes of the North Atlantic, and the Arctic Ocean that it connects to, the ocean can efficiently imprint its memory on the atmosphere by releasing the huge amounts of heat stored in it. In the UK we are on the same latitude as Canada and Siberia, and the Shetland Islands are further north than the southern tips of Greenland and Alaska, but the Atlantic Ocean circulation keeps the UK 5-10 degrees Centigrade warmer than those other countries. We can measure across an entire ocean by deploying reliable, self-recording instruments. We will use moorings (wires anchored to the seabed and supported in the water by air-filled glass spheres) to hold the instruments in the important locations. Every year from 2014 to 2018 we will use ships to recover the moorings and the data, then put the instruments back in the water. We will also use exciting new technology. Autonomous underwater Seagliders will fly from the surface to 1 km depth on year long-missions surveying the ocean, from Scotland to 2000 km westward into the Atlantic. The Seagliders transmit their data to our lab every day via satellite, and the pilot can fly the glider remotely. Also there is a global fleet of 3000 drifting floats to continuously measure the top 1 km of the ocean. Satellites provide important measurements of the ocean surface. With these new measurements, we will find how the heat carried by the ocean changes through the months and years of the project, and we will use complex computer models to help explain what we find.

    visibility117
    visibilityviews117
    downloaddownloads144
    Powered by Usage counts
    more_vert
Powered by OpenAIRE graph
Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
10 Projects
  • Funder: UKRI Project Code: NE/K005421/1
    Funder Contribution: 337,728 GBP

    Variations in sea level have a great environmental impact. They modulate coastal deposition, erosion and morphology, regulate heat and salt fluxes in estuaries, bays and ground waters, and control the dynamics of coastal ecosystems. Sea level variability has importance for coastal navigation, the building of coastal infrastructure, and the management of waste. The challenges of measuring, understanding and predicting sea level variations take particular relevance within the backdrop of global sea level rise, which might lead to the displacement of hundreds of millions of people by the end of this century. Sea level measurement relies primarily on the use of coastal tide gauges and satellite altimetry. Tide gauges provide sea levels at fine time resolutions (up to one second), but collect data only in coastal areas, and are irregularly distributed, with large gaps in the southern hemisphere and at high latitudes. Satellite altimetry, in contrast, has poor time resolution (ten days or longer), but provides near global coverage at moderate spatial resolutions (10-to-100 kilometres). Altimetric sea level products are problematic near the coast for reasons such as uncertainties in applying sea state bias corrections, errors in coastal tidal models, and large geoid gradients. The complicated shoreline geometry means that the raw altimeter data have to either undergo special transformations to provide more reliable measurements of sea level or be rejected. Developments in GPS measurements from buoys are now making it possible to determine sea surface heights with accuracy comparable to that of altimetry. In combination with coastal tide gauges, GPS buoys could be used as the nodes of a global sea level monitoring network extending beyond the coast. However, GPS buoys have several downsides. They are difficult and expensive to deploy, maintain, and recover, and, like conventional tide gauges, provide time series only at individual points in the ocean. This proposal focuses on the development of a unique system that overcomes these shortcomings. We propose a technology-led project to integrate Global Navigation Satellite Systems (GNSS i.e. encompassing GPS, GLONASS and, possibly, Galileo) technology with a state-of-the-art, unmanned surface vehicle: a Wave Glider. The glider farms the ocean wave field for propulsion, uses solar power to run on board equipment, and uses satellite communications for remote navigation and data transmission. A Wave Glider equipped with a high-accuracy GNSS receiver and data logger is effectively a fully autonomous, mobile, floating tide gauge. Missions and routes can be preprogrammed as well as changed remotely. Because the glider can be launched and retrieved from land or from a small boat, the costs associated with deployment, maintenance and recovery of the GNSS Wave Glider are comparatively small. GNSS Wave Glider technology promises a level of versatility well beyond that of existing ways of measuring sea levels. Potential applications of a GNSS Wave Glider include: 1) measurement of mean sea level and monitoring of sea level variations worldwide, 2) linking of offshore and onshore vertical datums, 3) calibration of satellite altimetry, notably in support of current efforts to reinterpret existing altimetric data near the coast, but also in remote and difficult to access areas, 4) determination of regional geoid variations, 5) ocean model improvement. The main thrust of this project is to integrate a state-of-the-art, geodetic-grade GNSS receiver and logging system with a Wave Glider recently acquired by NOC to create a mobile and autonomous GNSS-based tide gauge. By the end of the project, a demonstrator GNSS Wave Glider will be available for use by NOC and the UK marine community. The system performance will be validated against tide gauge data. Further tests will involve the use of the GNSS Wave Glider to calibrate sea surface heights and significant wave heights from Cryosat-2.

    more_vert
  • Funder: UKRI Project Code: NE/L001764/1
    Funder Contribution: 77,614 GBP

    Selenium (Se) and Tellurium (Te) are scarce (semi)metallic elements usually recovered as by-products of the chemical extraction of other metals. The proposal will exploit close relationships between these elements and organic materials to target additional resources, and extract resources in a more sustainable, environmentally sensitive manner. Se/Te are most concentrated in rocks containing organic matter (e.g. coals, carbon-rich shales, sandstones containing oil residues or coaly matter). We also know that microbial (bacterial) activity can concentrate Se/Te. We seek to use that knowledge to predict previously unrecognized concentrations of Se/Te by study of metal sulfide ores which are known to have been formed by microbial sulfate reduction, on the basis that these microbes could have also engendered Se/Te concentration. More significantly, we will try to advance our knowledge of how microbes interact with Se/Te in rocks and soil, to develop a strategy for the microbial concentration of Se/Te on a valuable scale. To achieve this the project combines interdisciplinary expertise on Se/Te from geology, soil science, chemistry and microbiology. The catalyst stage involves data gathering, and pilot sampling from two field sites, one in SW Ireland where some of the most Se-rich soils in the world occur, and in Scotland where a gold mine and its environs have elevated levels of Te, and the Te needs to be exploited to ensure financial viability. We have the support of Scotgold Resources, who own the gold mine, and Stantec, an international company whose portfolio includes management of metal resources.

    visibility8
    visibilityviews8
    downloaddownloads69
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/J023094/1
    Funder Contribution: 402,095 GBP

    Deep-sea sediments form a major reservoir in the global carbon (C) cycle and C burial in these sediments constitutes a major process that sequesters C on geological time scales. Organic matter sinking from surface waters is the main food source for deep-sea organisms, and their feeding and foraging activities control whether this organic C is recycled into the water column or buried in sediments ('carbon sequestration'). Food supply to the deep-sea benthos is reliant on phytoplankton growth in the euphotic zone, and changes in community composition, export flux or timing of bloom events will directly affect the supply to and turnover of POC at the seafloor and, subsequently, C sequestration. However, due to the remoteness of the deep-sea floor, our knowledge of the interplay between organic matter characteristics, benthic biodiversity and the early diagenesis of POC in the deep sea is very limited, and we can therefore neither reliably assess nor predict the consequences of climate change for this important ecosystem service. The detailed study of benthic C cycling in areas of strong natural fluctuations in POC flux characteristics, and/or pronounced climate-induced change in the pelagic environment, seems a promising way to gain urgently needed information on the potential impact of climate change on the cycling or burial of C in deep-sea sediments, while at the same time improving our understanding of the interplay between POM characteristics and benthic communities, and its function in the early diagenesis of POM. Sea ice is a unique feature of polar marine ecosystems and the fact that small temperature differences can have large effects on the extent and thickness of this sea ice makes polar marine ecosystems particularly sensitive to climate change. Indeed, major ecosystem shifts related to retreating sea ice have been reported from both the Arctic and Antarctic. Ice algae account for up to 25 % of the primary production (PP) in ice covered areas on the deep Arctic shelf, and even more in the Arctic Basin, and thus are likely to form an integral part of the diet of deep-sea organisms. Moreover, ice algal blooms differ considerably from phytoplankton in terms of timing and distribution, thus providing higher organisms with food when and where other food is scarce. Ice algae also contain very high concentrations of so-called "micronutrients", essential substances that many marine organisms can not synthesize themselves. The retreat of sea ice and subsequent loss of ice algae as food source is thus likely to significantly impact on deep-sea food webs and ecosystems. However, despite much speculation, very little information is available on the importance of ice algae as food for benthic organisms. We therefore propose to investigate the potential consequences of a climate-induced loss of ice algae (and possible shift to phytoplankton) as a food source for Arctic deep-sea food webs via two different approaches: A. Ice algae and phytoplankton differ in their bulk Carbon isotope signatures, as well as in the Carbon isotope signatures of certain essential fatty acids. We will thus use this difference in isotopic signature to trace the uptake of ice algal and phytoplankton biomass by benthic fauna. B. A series of in situ tracer experiments: we will label both ice algae and planktic algae with a tracer, add them to sediment cores obtained from the seafloor (so-called 'mesocosms'), and subsequently follow whether and how they are metabolized by the deep-sea organisms. This work will be carried out in the Canadian Arctic in collaboration with Professor Philippe Archabault from the University of Quebec, during field campaigns in the Gulf of St. Lawrence and the Beaufort Sea.

    visibility55
    visibilityviews55
    downloaddownloads46
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/K000284/2
    Funder Contribution: 196,397 GBP

    The Arctic is undergoing rapid climatic change, with dramatic consequences for the 'Frozen World' (the 'cryosphere'), including reductions in the depth, extent and duration of sea ice, and seasonal snow cover on land, retreat of ice sheets/glaciers, and melting of permafrost ("ground that remains at or below 0 degrees C for at least two consecutive years"). This is important not only for local and regional ecosystems and human communities, but also for the functioning of the entire earth system. Evidence is growing that organic matter frozen in permafrost soils (often for many millennia) is now thawing, making it available for decomposition by soil organisms, with the release of carbon dioxide (CO2) and methane (CH4), both greenhouse gases (GHGs), as by-products. A major concern now is that, because permafrost soils contain 1672 petagrams (1 Pg = 1 billion tonnes) of organic carbon (C), which is about 50% of the total global below-ground pool of organic C, and permafrost underlies ~ 25% (23 million km2) of the N hemisphere land surface, a melting-induced release of GHGs to the atmosphere from permafrost soils could result in a major acceleration of global warming. This is called a 'positive biogeochemical feedback' on global change; in other words, an unintentional side-effect in the global C cycle and climate system. Unfortunately, the interacting biological, chemical and physical controls on CO2 and CH4 emissions from permafrost (and melting permafrost) environments to the atmosphere are the subject of much speculation because the scientific community does not know enough about the interactions between C and water cycling in permafrost systems. Warmer and drier soils may release more CO2, while warmer/wetter soils might release more CH4. Permafrost thawing also causes changes in the way water flows though the landscape (because frozen ground if often impermeable to water), and some areas may become drier, while others wetter. How the relative proportions of CO2 and CH4 emissions change, and their absolute amount, is critical for the overall 'global warming potential' (GWP) because these two gases have different potency as GHGs. Release of C from soils into freshwaters also needs to be taken into account because down-stream 'de-gassing' and decomposition of organic materials also influences releases of CO2 and CH4 from freshwater, or delivery of C to lakes/oceans. All-in-all, predicting the GWP of permafrost regions is scientifically challenging, and the interactions between the water (hydrological) and C cycles are poorly known. In this project we recognise the key role that hydrological processes play in landscape-scale C fluxes in arctic and boreal regions. In permafrost catchments in NW Canada (including areas where permafrost is known to be thawing) we will measure the capture of C from the atmosphere (through photosynthesis), its distribution in plants and soils, and the biological, physical and chemical controls of C transport and delivery from soils to freshwaters, and ultimately to the atmosphere as CO2 and CH4. In essence we wish to 'close the C cycle'. Field-based measurements of key processes in the water and C cycles, including geochemical tracer and state-of-the-art C, hydrogen and oxygen isotope approaches, will be linked by computer modelling. The project team, together with partners in Canada, the US and UK, is in a unique position to link the water and C cycles in permafrost environments, and we will deliver essential scientific knowledge on the potential consequences of climate warming, and permafrost thawing, for GHG emissions from northern high latitudes. Both for local peoples directly dependent on arctic tundra/boreal forest ecosystems for their livelihoods and cultural identity, and for the global community who must respond to, and anticipate, potential consequences of climate and environmental change, this project will represent a significant step forward in understanding/predictive capacity.

    more_vert
  • Funder: UKRI Project Code: NE/L000318/1
    Funder Contribution: 620,481 GBP

    For all sources of radioactivity, radiological risk assessments are essential for safeguarding human and environmental health. But assessments often have to rely upon simplistic assumptions, such as the use of simple ratios in risk calculations which combine many processes. This pragmatic approach has largely arisen due to the lack of scientific knowledge and/or data in key areas. The resultant uncertainty has been taken into account through conservative approaches to radiological risk assessment which may tend to overestimate risk. Uncertainty arises at all stages of the assessment process from the estimation of transfer to human foodstuffs and wildlife, exposure and risk. Reducing uncertainty is important as it relates directly to scientific credibility, which will always be open to challenge given the highly sensitive nature of radiological risk assessment in society. We propose an integrated, multi-disciplinary, programme to assess and reduce the uncertainty associated with radiological risk assessment to protect human health and the environment. At the same time we will contribute to building the capacity needed to ensure that the UK rebuilds and maintains expertise in environmental radioactivity into the future. Our project has four major and highly inter-related components to address the key goal of RATE to rebuild UK capacity and make a major contribution to enhancing environmental protection and safeguarding human health. The first component will study how the biological availability of radionuclides varies in soils over time. We will investigate if short-term measurements (collected in three year controlled experiments) can be used to predict the long-term availability of radionuclides in soils by testing our models in the Chernobyl exclusion zone. The second component will apply the concepts of 'phylogeny' and 'ionomics' to characterise radionuclide uptake by plants and other organisms. These approaches, and statistical modelling methods, are increasingly applied to describe uptake of a range of elements in plant nutrition, and we are pioneering their use for studying radionuclide uptake in other organisms and human foods. A particularly exciting aspect of the approach is the possibility to make predictions for any plant or animal. This is of great value as it is impossible to measure uptake for all wildlife, crops and farm animals. The third component of the work will extend our efforts to improve the quantification of radiation exposure and understanding of resultant biological effects by investigating the underlying mechanisms involved. A key aim is to see whether what we know from experiments on animals and plants in the laboratory is a good representation of what happens in the real world: some scientists believe that animals in the natural environment are more susceptible to radiation than laboratory animals: we need to test this to have confidence in our risk assessments. Together these studies will enable us to reduce and better quantify the uncertainties associated with radiological risk assessment. By training a cohort of PDRA and PhDs our fourth component will help to renew UK capacity in environmental radioactivity by providing trained, experienced researchers who are well networked within the UK and internationally through the contacts of the investigators. Our students will be trained in a wide range of essential skills through their controlled laboratory studies and working in contaminated environments. They will benefit from being a member of a multidisciplinary team and opportunities to take placements with our beneficiaries and extensive range of project partners. The outputs of the project will benefit governmental and non-governmental organisations with responsibility for assessing the risks to humans and wildlife posed by environmental radioactivity. It will also make a major contribution to improved scientific and public confidence in the outcomes of environmental safety assessments.

    visibility106
    visibilityviews106
    downloaddownloads175
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/K004999/1
    Funder Contribution: 543,907 GBP

    Recent work has shown that the single largest unknown in assessing the contribution of mountain glaciers and ice caps to contemporary global sea-level rise is the rate of mass loss by iceberg calving from large Arctic ice caps (Radic and Hock, 2011, Nature Geoscience). The largest ice caps in the Arctic, and indeed the largest ice masses outside the Antarctic and Greenland ice sheets, are those of the Canadian Arctic islands. Importantly, new findings indicate that, for 2004-2009, a sharp increase in the rate of mass loss also makes the Canadian Arctic Archipelago the single largest contributor to global sea-level rise outside Greenland and Antarctica (Gardner et al., 2011, Nature). Each of these large Canadian ice caps is divided into a series of drainage basins that flow into fjords via narrow, heavily crevassed fast-flowing outlet glaciers which dissect the islands' fringing mountains. A major question for scientists and policymakers is, therefore, how these ice caps will continue to react to the temperature rises that are predicted for the 21st century, noting that Atmospheric General Circulation Models predict that temperature rise will be significantly greater in the Arctic than at lower latitudes. Numerical modelling of large ice masses is constrained, however, by a lack of knowledge of the geometry and nature of the bed of these outlet glaciers. We will acquire geophysical data from ice-cap outlet glaciers draining the large ice caps on Ellesmere and Devon islands in the Canadian Arctic using an airborne ice-penetrating radar, laser altimeter, gravimeter, magnetometer and GPS instruments. We will focus on three key areas of each drainage basin: the heavily crevassed fast-flowing outlet glaciers themselves, an upper transition zone between the ice-cap interior and the narrow outlet glaciers; and the grounding zone marking the transition to floating ice tongues at the head of some Canadian High-Arctic fjords. Our scientific objectives are: (a) to determine ice-surface and subglacial-bed elevation; (b) to characterize the substrate, in particular whether it is bedrock or deformable sediment; (c) to establish the distribution of subglacial melting; (d) to reveal basal character changes at the transition zones between inland ice, outlet glaciers and the grounding zone; (e) to provide new estimates of outlet glacier calving fluxes and their variability on up to decadal timescales. This information, integrated with satellite datasets on outlet-glacier surface motion and our earlier observations of the regional-scale geometry of these ice caps, will provide fundamental boundary conditions for the numerical modelling of these ice caps and, thus, how they may respond to atmospheric and ocean warming over the coming decades, with implications for sea-level rise.

    more_vert
  • Funder: UKRI Project Code: NE/L002280/1
    Funder Contribution: 96,635 GBP

    Rare Earth Elements (REE) are used in many low carbon technologies, ranging from low energy lighting to permanent magnets in large wind turbines and hybrid cars. They are almost ubiquitous: in every smartphone and computer. Yet 97% of World supply comes from a few localities in China. Rare earth prices are volatile and subject to political control, and but substitute materials are difficult to design. The most problematic REEs to source are neodymium and the higher atomic number 'heavy' rare earths - a group dubbed the 'critical rare earths'. However, with many potential rare earth ore deposits in a wide variety of rocks, there is no underlying reason why rare earths should not be readily and relatively cheaply available. The challenge is to find and extract rare earths from the right locations in the most environmentally friendly, cost efficient manner to give a secure, reasonably priced, responsibly sourced supply. In this project, the UK's geological research experts in rare earth ore deposits team up with leaders in (a) geological fluid compositions and modelling, (b) using fundamental physics and chemistry of minerals to model processes from first principles and (c) materials engineering expertise in extractive metallurgy. This community brings expertise in carbonatites and alkaline rocks, some of the Earth's most extreme rock compositions, which comprise the majority of active exploration projects. The UK has a wealth of experience of study of economic deposits of rare earths (including the World's largest deposit at Bayan Obo in China) which will be harnessed. The team identify that a key issue is to understand the conditions that concentrate heavy rare earths but create deposits free from thorium and uranium that create radioactive tailings. Results so far from alkaline rocks and carbonatites are contradictory. A workshop will bring together the project team and partners, including a leading Canadian researcher on rare earth mobility, to debate the results and design experiments and modelling that can be done in the UK to solve this problem. Understanding, and then emulating how REE deposits form, may provide us with the best clues to extract REEs from their ores. One important route is to understand the clay-rich deposits in China which provide most of the World's heavy rare earths; they are simple to mine, not radioactive, and need little energy to process. The workshop will consider how these deposits form, how we can use our experimental and modelling expertise to understand them better and predict where companies should explore for them. The other main problem, restricting development of almost all rare earth projects, is the difficulty of efficient separation of rare earth ore minerals from each other and then extraction of the elements from those ores. A work shop on geometallurgy (linking geology through mining, processing, extractive metallurgy and behaviour in the environment) will be used to explore how geological knowledge can be used (a) to predict the processing and environmental characteristics of different types of ores and (b) to see if any new potential processing methods might be tried, taking advantage of fundamental mineralogical properties. The two workshops link geology to metallurgy, using one to inform the other. This project will form the basis for an international collaborative consortium bid to NERC. It will also catalyse a long-term UK multidisciplinary network linking rare earth researchers to users, and promote the profile of the UK in this world-wide important field. Before the team design the research programme, they will consult academic colleagues working on new applications of rare earths and rare earth recycling, plus exploration companies, users further along the up the supply chain and policy makers. This will ensure that the proposals developed have maximum impact on future supply chain security.

    visibility38
    visibilityviews38
    downloaddownloads122
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/K005243/1
    Funder Contribution: 443,723 GBP

    The shift from hunting and gathering to an agricultural way of life was one of the most profound events in the history of our species and one which continues to impact our existence today. Understanding this process is key to understanding the origins and rise of human civilization. Despite decades of study, however, fundamental questions regarding why, where and how it occurred remain largely unanswered. Such a fundamental change in human existence could not have been possible without the domestication of selected animals and plants. The dog is crucial in this story since it was not only the first ever domestic animal, but also the only animal to be domesticated by hunter-gatherers several thousand years before the appearance of farmers. The bones and teeth of early domestic dogs and their wild wolf ancestors hold important clues to our understanding of how, where and when humans and wild animals began the relationship we still depend upon today. These remains have been recovered from as early as 15,000 years ago in numerous archaeological sites across Eurasia suggesting that dogs were either domesticated independently on several occasions across the Old World, or that dogs were domesticated just once and subsequently spreading with late Stone Age hunter gatherers across the Eurasian continent and into North America. There are also those who suggest that wolves were involved in an earlier, failed domestication experiment by Ice Age Palaeolithic hunters about 32,000 years ago. Despite the fact that we generally know the timing and locations of the domestication of all the other farmyard animals, we still know very little for certain about the origins of our most iconic domestic animal. New scientific techniques that include the combination of genetics and statistical analyses of the shapes of ancient bones and teeth are beginning to provide unique insights into the biology of the domestication process itself, as well as new ways of tracking the spread of humans and their domestic animals around the globe. By employing these techniques we will be able to observe the variation that existed in early wolf populations at different levels of biological organization, identify diagnostic signatures that pinpoint which ancestral wolf populations were involved in early dog domestication, reveal the shape (and possibly the genetic) signatures specifically linked to the domestication process and track those signatures through time and space. We have used this combined approach successfully in our previous research enabling us to definitively unravel the complex story of pig domestication in both Europe and the Far East. We have shown that pigs were domesticated multiple times and in multiple places across Eurasia, and the fine-scale resolution of the data we have generated has also allowed us to reveal the migration routes pigs took with early farmers across Europe and into the Pacific. By applying this successful research model to ancient dogs and wolves, we will gain much deeper insight into the fundamental questions that still surround the story of dog domestication.

    visibility380
    visibilityviews380
    downloaddownloads1,790
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/J015962/1
    Funder Contribution: 150,546 GBP

    Forecasting the weather from days to two weeks in advance has typically focused on the troposphere, the layer of the atmosphere closest to the ground. A typical weather forecast first attempts to estimate what the atmosphere is like now, and then extrapolates forward in time, using a complex model of the atmosphere based on the basic physical laws of motion. Over the last 15 years, evidence has been growing that different parts of the atmosphere and Earth system can also be exploited to improve weather forecasts. One of these regions is the stratosphere, the layer directly above the troposphere. Because, temperatures increase with height in the stratosphere, winds and weather systems are quite different, and a distinct community of scientific researchers who study the stratosphere exists around the world. Through the work of this community, many weather forecasting centres have been encouraged to look to the stratosphere to improve their weather forecasts and have been modifying their weather forecasting models accordingly. What has been missing, however, is a concerted effort to understand how best to make use of the stratosphere to improve weather forecasts and to determine how much weather forecasts might benefit. This proposal will fund a new international scientific network which will bring scientists from around the world together to study the stratosphere and how it might be used to improve weather forecasts. The network is made up of scientists from universities and weather forecasting centres around the world and is supported by two other international scientific research bodies. The network will allow scientists to come together to discuss current research in this area and to plan and carry out a new experiment which will compare the stratosphere and its impact on weather forecasts in their weather forecasting models. At the end of the research project, the network members will work together to produce a report which will provide guidance to all weather forecasting centres on the use of the stratosphere for weather forecasting.

    more_vert
  • Funder: UKRI Project Code: NE/K010875/1
    Funder Contribution: 2,188,100 GBP

    UK-OSNAP: Summary What is climate? The sun's energy is constantly heating the Earth in equatorial regions, while in the Arctic and Antarctic the Earth is frozen and constantly losing heat. Ocean currents and atmospheric weather together move heat from the equator towards the poles to keep the Earth's regional temperatures in balance. So climate is simply the heat moved by ocean currents and by the weather. Earth's climate is warming: the average temperature of the Earth is rising at a rate of about 0.75 degrees Centigrade per hundred years, caused by carbon dioxide in the atmosphere trapping heat that is normally lost to space. Can we forecast how climate might change in the future? There is an old adage that rings true: "Climate is what you expect; weather is what you get". Hot weather in one summer does not tell us that climate is changing because the weather is so variable day-to-day and even year-to-year. We need to average over all the weather for a long time to decide if the climate is changing. We would like to know if the climate is changing before our descendants face the consequences, and that is where our project comes in. The ultimate ambition of climate scientists is nothing less than forecasting climate up to 10 years in advance. Is this possible? After all we know weather forecasts become somewhat unreliable after three to five days. The answer is yes because of the ocean. Slow and deep currents give the ocean a memory from years to hundreds of years, and the ocean passes this memory onto the climate. If we know the condition of the ocean now, then we have a good chance of understanding how this will affect the climate in years to come. We have set ourselves a huge task, but will be helped by colleagues in the US, Canada, Germany, Netherlands, Faroe Islands, Iceland, Denmark and Scotland. We will continuously measure the ocean circulation from Canada to Greenland to Scotland (the subpolar North Atlantic Ocean). This has never been attempted before. We have chosen the North Atlantic because the circulation here is important for the whole of Earth's climate. This is because in the high latitudes of the North Atlantic, and the Arctic Ocean that it connects to, the ocean can efficiently imprint its memory on the atmosphere by releasing the huge amounts of heat stored in it. In the UK we are on the same latitude as Canada and Siberia, and the Shetland Islands are further north than the southern tips of Greenland and Alaska, but the Atlantic Ocean circulation keeps the UK 5-10 degrees Centigrade warmer than those other countries. We can measure across an entire ocean by deploying reliable, self-recording instruments. We will use moorings (wires anchored to the seabed and supported in the water by air-filled glass spheres) to hold the instruments in the important locations. Every year from 2014 to 2018 we will use ships to recover the moorings and the data, then put the instruments back in the water. We will also use exciting new technology. Autonomous underwater Seagliders will fly from the surface to 1 km depth on year long-missions surveying the ocean, from Scotland to 2000 km westward into the Atlantic. The Seagliders transmit their data to our lab every day via satellite, and the pilot can fly the glider remotely. Also there is a global fleet of 3000 drifting floats to continuously measure the top 1 km of the ocean. Satellites provide important measurements of the ocean surface. With these new measurements, we will find how the heat carried by the ocean changes through the months and years of the project, and we will use complex computer models to help explain what we find.

    visibility117
    visibilityviews117
    downloaddownloads144
    Powered by Usage counts
    more_vert
Powered by OpenAIRE graph