Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Projects, page 1 of 1

  • Canada
  • 2013-2022
  • UK Research and Innovation
  • UKRI|NERC
  • 2014
  • 2017

  • Funder: UKRI Project Code: NE/K005243/2
    Funder Contribution: 330,678 GBP
    Partners: RAS, ENSL, Natural History Museum, Leiden University, Hokkeido University, University of Oxford, University of Salford, UCLA, University of Edinburgh, CNRS...

    The shift from hunting and gathering to an agricultural way of life was one of the most profound events in the history of our species and one which continues to impact our existence today. Understanding this process is key to understanding the origins and rise of human civilization. Despite decades of study, however, fundamental questions regarding why, where and how it occurred remain largely unanswered. Such a fundamental change in human existence could not have been possible without the domestication of selected animals and plants. The dog is crucial in this story since it was not only the first ever domestic animal, but also the only animal to be domesticated by hunter-gatherers several thousand years before the appearance of farmers. The bones and teeth of early domestic dogs and their wild wolf ancestors hold important clues to our understanding of how, where and when humans and wild animals began the relationship we still depend upon today. These remains have been recovered from as early as 15,000 years ago in numerous archaeological sites across Eurasia suggesting that dogs were either domesticated independently on several occasions across the Old World, or that dogs were domesticated just once and subsequently spreading with late Stone Age hunter gatherers across the Eurasian continent and into North America. There are also those who suggest that wolves were involved in an earlier, failed domestication experiment by Ice Age Palaeolithic hunters about 32,000 years ago. Despite the fact that we generally know the timing and locations of the domestication of all the other farmyard animals, we still know very little for certain about the origins of our most iconic domestic animal. New scientific techniques that include the combination of genetics and statistical analyses of the shapes of ancient bones and teeth are beginning to provide unique insights into the biology of the domestication process itself, as well as new ways of tracking the spread of humans and their domestic animals around the globe. By employing these techniques we will be able to observe the variation that existed in early wolf populations at different levels of biological organization, identify diagnostic signatures that pinpoint which ancestral wolf populations were involved in early dog domestication, reveal the shape (and possibly the genetic) signatures specifically linked to the domestication process and track those signatures through time and space. We have used this combined approach successfully in our previous research enabling us to definitively unravel the complex story of pig domestication in both Europe and the Far East. We have shown that pigs were domesticated multiple times and in multiple places across Eurasia, and the fine-scale resolution of the data we have generated has also allowed us to reveal the migration routes pigs took with early farmers across Europe and into the Pacific. By applying this successful research model to ancient dogs and wolves, we will gain much deeper insight into the fundamental questions that still surround the story of dog domestication.

  • Funder: UKRI Project Code: NE/L013223/1
    Funder Contribution: 331,626 GBP
    Partners: University of St Andrews, JSPS London (Japanese Society), Ardtoe Marine Laboratory, Acadian Seaplants (Canada), Yellow Sea Fisheries Research Institute, ECU, UM, Natural History Museum, KNU, Bioforsk...

    Worldwide, seaweed aquaculture has been developing at an unabated exponential pace over the last six decades. China, Japan, and Korea lead the world in terms of quantities produced. Other Asiatic countries, South America and East Africa have an increasingly significant contribution to the sector. On the other hand, Europe and North America have a long tradition of excellent research in phycology, yet hardly any experience in industrial seaweed cultivation. The Blue Growth economy agenda creates a strong driver to introduce seaweed aquaculture in the UK. GlobalSeaweed: - furthers NERC-funded research via novel collaborations with world-leading scientists; - imports know-how on seaweed cultivation and breeding into the UK; - develops training programs to fill a widening UK knowledge gap; - structures the seaweed sector to streamline the transfer of research results to the seaweed industry and policy makers at a global scale; - creates feedback mechanisms for identifying emergent issues in seaweed cultivation. This ambitious project will work towards three strands of deliverables: Knowledge creation, Knowledge Exchange and Training. Each of these strands will have specific impact on key beneficiary groups, each of which are required to empower the development of a strong UK seaweed cultivation industry. A multi-pronged research, training and financial sustainability roadmap is presented to achieve long-term global impact thanks to NERC's pump-priming contribution. The overarching legacy will be the creation of a well-connected global seaweed network which, through close collaboration with the United Nations University, will underpin the creation of a Seaweed International Project Office (post-completion of the IOF award).

  • Funder: UKRI Project Code: NE/K01286X/1
    Funder Contribution: 322,205 GBP
    Partners: DFO, University of Exeter, CWR, University of St Andrews

    Understanding why females stop reproduction prior to the end of their lives is a key objective in the biological, medical and social sciences. In traditional human societies for example, women typically have their last child at 38 but may live for a further 20 years or so. This phenomenon is by no means restricted to humans and across many species of mammals, birds and fish, females may have a lifespan that extends far beyond their last birth. Why is this? Three possible reasons have been suggested: i) It could simply be a byproduct of females living for a long time; ii) it may benefit post-reproductive females by increasing the survival of their offspring and/or grand offspring or iii) old females may lose out to young females when competing for the food needed to support pregnancy and producing milk. In humans it seems that a combination of ii and iii have driven the evolution of menopause. Currently however, almost nothing is known about the forces that have shaped the post-reproductive lifespan in non-human animals that live in close-knit family groups. In this project we will test for the first time the current evolutionary theory for the post-reproductive lifespan in a non-human animal. Our study will focus on two populations of killer whales Orcinus orca that live off the coast of North America. Killer whales have the longest post-reproductive lifespan of all non-human animals; females stop reproducing in their 30s-40s but can survive into their 90s. We will use data collected over the last three decades during which time more than 600 whales have been recorded. We will use information about births and deaths to examine how social factors shape fertility and survival. In particular we will ask the following questions: (1) How do post-reproductive females benefit from a post-reproductive lifespan? (2) In what ways do older females provide support to their offspring / grand offspring? (3) Do older females lose out when competing with younger females for the food needed to reproduce? (4) Can the observed benefits (question 1) and the consequences of reproductive competition (question 3) explain the evolution of the long post-reproductive lifespan in killer whales? We will address questions 1 and 3 by using the long term data documenting births and deaths in both populations. We will use analysis techniques similar to those used by insurance companies to calculate life expectancy when deciding what premiums to charge people on their life insurance. In our analysis we will examine how survival is affected by the presence and behavior of post-reproductive females. We will address question 2 by using video and photographic records to examine social interactions between mothers and their offspring / grand offspring. We will test how important this relationship is for survival. Finally we will address question 4 by building a simulation model of the populations. We will use our observations from the whales to set the parameters in the model [e.g. the amount by which post-reproductive females increase the survival of their offspring]. The model will then simulate evolution, allowing us to examine if the effects we are seeing in the populations are sufficient to have driven the evolution of the long post-reproductive lifespan in killer whales. This programme of research promises to advance our understanding of how natural selection has shaped life history evolution in species that live in close-knit family groups. Our work will provide the first test of the current evolutionary theory for the evolution of menopause in non-human animals and the outputs of this work will provide an informative comparison for the evolution of human life history. More generally, our work will advance our understanding of the ageing process in social species and the interplay between an individual's social relationships and its life expectancy.

  • Funder: UKRI Project Code: NE/K012932/1
    Funder Contribution: 313,864 GBP
    Partners: LBL, Imperial College London, University of Southampton, University of Toronto, Stockholm University, Met Office

    This project is concerned with measuring changes in global rainfall and ensuring that computer models of the climate can predict how rainfall will change in the future. As carbon dioxide and other greenhouse gases are continually added to the atmosphere, it is understood that the temperature of the surface of the earth will rise. Warmer air can hold more moisture, so as the Earth warms the rate at which the atmosphere extracts water from the surface of the earth and dumps it back as rain will also increase. Knowing precisely how much global rates of rainfall will change into the future is important to many people including farmers wanting to know which crops to plant and nations wanting to build domestic water and hydroelectric infrastructure. Measuring the total rainfall around the world is no mean feat. On land, measurements are made directly (by catching the rain) or by reliable 'indirect' methods based on river flow and how wet the soil is. However, two-thirds of the globe is covered by ocean. It is hard to catch rain in the middle of the ocean without actually being there to do it. Although many 'indirect' methods exist for measuring rainfall over the ocean there is great uncertainty about how much rainfall has changed over the ocean in the last 50 years or so. Thankfully there is a solution. The ocean itself acts as a giant rain catcher. Water that falls as rain is fresh water, like the water we drink. Most of the ocean however, is very salty. So the more rain that falls, the fresher the ocean water gets and the more evaporation that occurs the saltier the ocean water gets. Oceanographers can measure just how salty the water in the ocean is and have been doing so regularly for more than 50 years now. The question remains however, how do you turn measurements of the salinity of the ocean into measurement of how much rain has fallen? Well, by looking all around the globe and counting up how much more salty water there is and how much fresh water there is, researchers can estimate how much water has been evaporated in one place and fallen as rain in another. The researchers involved in this project will do this using all the observations of salinity in the ocean taken over the last 50 years. They will estimate just how much rainfall has changed. They will compare this with computer models which are commonly used to predict what will happen in the future to see how accurate they are and how they can be improved.

Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Projects, page 1 of 1
  • Funder: UKRI Project Code: NE/K005243/2
    Funder Contribution: 330,678 GBP
    Partners: RAS, ENSL, Natural History Museum, Leiden University, Hokkeido University, University of Oxford, University of Salford, UCLA, University of Edinburgh, CNRS...

    The shift from hunting and gathering to an agricultural way of life was one of the most profound events in the history of our species and one which continues to impact our existence today. Understanding this process is key to understanding the origins and rise of human civilization. Despite decades of study, however, fundamental questions regarding why, where and how it occurred remain largely unanswered. Such a fundamental change in human existence could not have been possible without the domestication of selected animals and plants. The dog is crucial in this story since it was not only the first ever domestic animal, but also the only animal to be domesticated by hunter-gatherers several thousand years before the appearance of farmers. The bones and teeth of early domestic dogs and their wild wolf ancestors hold important clues to our understanding of how, where and when humans and wild animals began the relationship we still depend upon today. These remains have been recovered from as early as 15,000 years ago in numerous archaeological sites across Eurasia suggesting that dogs were either domesticated independently on several occasions across the Old World, or that dogs were domesticated just once and subsequently spreading with late Stone Age hunter gatherers across the Eurasian continent and into North America. There are also those who suggest that wolves were involved in an earlier, failed domestication experiment by Ice Age Palaeolithic hunters about 32,000 years ago. Despite the fact that we generally know the timing and locations of the domestication of all the other farmyard animals, we still know very little for certain about the origins of our most iconic domestic animal. New scientific techniques that include the combination of genetics and statistical analyses of the shapes of ancient bones and teeth are beginning to provide unique insights into the biology of the domestication process itself, as well as new ways of tracking the spread of humans and their domestic animals around the globe. By employing these techniques we will be able to observe the variation that existed in early wolf populations at different levels of biological organization, identify diagnostic signatures that pinpoint which ancestral wolf populations were involved in early dog domestication, reveal the shape (and possibly the genetic) signatures specifically linked to the domestication process and track those signatures through time and space. We have used this combined approach successfully in our previous research enabling us to definitively unravel the complex story of pig domestication in both Europe and the Far East. We have shown that pigs were domesticated multiple times and in multiple places across Eurasia, and the fine-scale resolution of the data we have generated has also allowed us to reveal the migration routes pigs took with early farmers across Europe and into the Pacific. By applying this successful research model to ancient dogs and wolves, we will gain much deeper insight into the fundamental questions that still surround the story of dog domestication.

  • Funder: UKRI Project Code: NE/L013223/1
    Funder Contribution: 331,626 GBP
    Partners: University of St Andrews, JSPS London (Japanese Society), Ardtoe Marine Laboratory, Acadian Seaplants (Canada), Yellow Sea Fisheries Research Institute, ECU, UM, Natural History Museum, KNU, Bioforsk...

    Worldwide, seaweed aquaculture has been developing at an unabated exponential pace over the last six decades. China, Japan, and Korea lead the world in terms of quantities produced. Other Asiatic countries, South America and East Africa have an increasingly significant contribution to the sector. On the other hand, Europe and North America have a long tradition of excellent research in phycology, yet hardly any experience in industrial seaweed cultivation. The Blue Growth economy agenda creates a strong driver to introduce seaweed aquaculture in the UK. GlobalSeaweed: - furthers NERC-funded research via novel collaborations with world-leading scientists; - imports know-how on seaweed cultivation and breeding into the UK; - develops training programs to fill a widening UK knowledge gap; - structures the seaweed sector to streamline the transfer of research results to the seaweed industry and policy makers at a global scale; - creates feedback mechanisms for identifying emergent issues in seaweed cultivation. This ambitious project will work towards three strands of deliverables: Knowledge creation, Knowledge Exchange and Training. Each of these strands will have specific impact on key beneficiary groups, each of which are required to empower the development of a strong UK seaweed cultivation industry. A multi-pronged research, training and financial sustainability roadmap is presented to achieve long-term global impact thanks to NERC's pump-priming contribution. The overarching legacy will be the creation of a well-connected global seaweed network which, through close collaboration with the United Nations University, will underpin the creation of a Seaweed International Project Office (post-completion of the IOF award).

  • Funder: UKRI Project Code: NE/K01286X/1
    Funder Contribution: 322,205 GBP
    Partners: DFO, University of Exeter, CWR, University of St Andrews

    Understanding why females stop reproduction prior to the end of their lives is a key objective in the biological, medical and social sciences. In traditional human societies for example, women typically have their last child at 38 but may live for a further 20 years or so. This phenomenon is by no means restricted to humans and across many species of mammals, birds and fish, females may have a lifespan that extends far beyond their last birth. Why is this? Three possible reasons have been suggested: i) It could simply be a byproduct of females living for a long time; ii) it may benefit post-reproductive females by increasing the survival of their offspring and/or grand offspring or iii) old females may lose out to young females when competing for the food needed to support pregnancy and producing milk. In humans it seems that a combination of ii and iii have driven the evolution of menopause. Currently however, almost nothing is known about the forces that have shaped the post-reproductive lifespan in non-human animals that live in close-knit family groups. In this project we will test for the first time the current evolutionary theory for the post-reproductive lifespan in a non-human animal. Our study will focus on two populations of killer whales Orcinus orca that live off the coast of North America. Killer whales have the longest post-reproductive lifespan of all non-human animals; females stop reproducing in their 30s-40s but can survive into their 90s. We will use data collected over the last three decades during which time more than 600 whales have been recorded. We will use information about births and deaths to examine how social factors shape fertility and survival. In particular we will ask the following questions: (1) How do post-reproductive females benefit from a post-reproductive lifespan? (2) In what ways do older females provide support to their offspring / grand offspring? (3) Do older females lose out when competing with younger females for the food needed to reproduce? (4) Can the observed benefits (question 1) and the consequences of reproductive competition (question 3) explain the evolution of the long post-reproductive lifespan in killer whales? We will address questions 1 and 3 by using the long term data documenting births and deaths in both populations. We will use analysis techniques similar to those used by insurance companies to calculate life expectancy when deciding what premiums to charge people on their life insurance. In our analysis we will examine how survival is affected by the presence and behavior of post-reproductive females. We will address question 2 by using video and photographic records to examine social interactions between mothers and their offspring / grand offspring. We will test how important this relationship is for survival. Finally we will address question 4 by building a simulation model of the populations. We will use our observations from the whales to set the parameters in the model [e.g. the amount by which post-reproductive females increase the survival of their offspring]. The model will then simulate evolution, allowing us to examine if the effects we are seeing in the populations are sufficient to have driven the evolution of the long post-reproductive lifespan in killer whales. This programme of research promises to advance our understanding of how natural selection has shaped life history evolution in species that live in close-knit family groups. Our work will provide the first test of the current evolutionary theory for the evolution of menopause in non-human animals and the outputs of this work will provide an informative comparison for the evolution of human life history. More generally, our work will advance our understanding of the ageing process in social species and the interplay between an individual's social relationships and its life expectancy.

  • Funder: UKRI Project Code: NE/K012932/1
    Funder Contribution: 313,864 GBP
    Partners: LBL, Imperial College London, University of Southampton, University of Toronto, Stockholm University, Met Office

    This project is concerned with measuring changes in global rainfall and ensuring that computer models of the climate can predict how rainfall will change in the future. As carbon dioxide and other greenhouse gases are continually added to the atmosphere, it is understood that the temperature of the surface of the earth will rise. Warmer air can hold more moisture, so as the Earth warms the rate at which the atmosphere extracts water from the surface of the earth and dumps it back as rain will also increase. Knowing precisely how much global rates of rainfall will change into the future is important to many people including farmers wanting to know which crops to plant and nations wanting to build domestic water and hydroelectric infrastructure. Measuring the total rainfall around the world is no mean feat. On land, measurements are made directly (by catching the rain) or by reliable 'indirect' methods based on river flow and how wet the soil is. However, two-thirds of the globe is covered by ocean. It is hard to catch rain in the middle of the ocean without actually being there to do it. Although many 'indirect' methods exist for measuring rainfall over the ocean there is great uncertainty about how much rainfall has changed over the ocean in the last 50 years or so. Thankfully there is a solution. The ocean itself acts as a giant rain catcher. Water that falls as rain is fresh water, like the water we drink. Most of the ocean however, is very salty. So the more rain that falls, the fresher the ocean water gets and the more evaporation that occurs the saltier the ocean water gets. Oceanographers can measure just how salty the water in the ocean is and have been doing so regularly for more than 50 years now. The question remains however, how do you turn measurements of the salinity of the ocean into measurement of how much rain has fallen? Well, by looking all around the globe and counting up how much more salty water there is and how much fresh water there is, researchers can estimate how much water has been evaporated in one place and fallen as rain in another. The researchers involved in this project will do this using all the observations of salinity in the ocean taken over the last 50 years. They will estimate just how much rainfall has changed. They will compare this with computer models which are commonly used to predict what will happen in the future to see how accurate they are and how they can be improved.