Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
565 Projects, page 1 of 57

  • Canada
  • UK Research and Innovation

10
arrow_drop_down
  • Funder: UKRI Project Code: NE/K005421/1
    Funder Contribution: 337,728 GBP
    Partners: AXYS, NOC, Liquid Robotics

    Variations in sea level have a great environmental impact. They modulate coastal deposition, erosion and morphology, regulate heat and salt fluxes in estuaries, bays and ground waters, and control the dynamics of coastal ecosystems. Sea level variability has importance for coastal navigation, the building of coastal infrastructure, and the management of waste. The challenges of measuring, understanding and predicting sea level variations take particular relevance within the backdrop of global sea level rise, which might lead to the displacement of hundreds of millions of people by the end of this century. Sea level measurement relies primarily on the use of coastal tide gauges and satellite altimetry. Tide gauges provide sea levels at fine time resolutions (up to one second), but collect data only in coastal areas, and are irregularly distributed, with large gaps in the southern hemisphere and at high latitudes. Satellite altimetry, in contrast, has poor time resolution (ten days or longer), but provides near global coverage at moderate spatial resolutions (10-to-100 kilometres). Altimetric sea level products are problematic near the coast for reasons such as uncertainties in applying sea state bias corrections, errors in coastal tidal models, and large geoid gradients. The complicated shoreline geometry means that the raw altimeter data have to either undergo special transformations to provide more reliable measurements of sea level or be rejected. Developments in GPS measurements from buoys are now making it possible to determine sea surface heights with accuracy comparable to that of altimetry. In combination with coastal tide gauges, GPS buoys could be used as the nodes of a global sea level monitoring network extending beyond the coast. However, GPS buoys have several downsides. They are difficult and expensive to deploy, maintain, and recover, and, like conventional tide gauges, provide time series only at individual points in the ocean. This proposal focuses on the development of a unique system that overcomes these shortcomings. We propose a technology-led project to integrate Global Navigation Satellite Systems (GNSS i.e. encompassing GPS, GLONASS and, possibly, Galileo) technology with a state-of-the-art, unmanned surface vehicle: a Wave Glider. The glider farms the ocean wave field for propulsion, uses solar power to run on board equipment, and uses satellite communications for remote navigation and data transmission. A Wave Glider equipped with a high-accuracy GNSS receiver and data logger is effectively a fully autonomous, mobile, floating tide gauge. Missions and routes can be preprogrammed as well as changed remotely. Because the glider can be launched and retrieved from land or from a small boat, the costs associated with deployment, maintenance and recovery of the GNSS Wave Glider are comparatively small. GNSS Wave Glider technology promises a level of versatility well beyond that of existing ways of measuring sea levels. Potential applications of a GNSS Wave Glider include: 1) measurement of mean sea level and monitoring of sea level variations worldwide, 2) linking of offshore and onshore vertical datums, 3) calibration of satellite altimetry, notably in support of current efforts to reinterpret existing altimetric data near the coast, but also in remote and difficult to access areas, 4) determination of regional geoid variations, 5) ocean model improvement. The main thrust of this project is to integrate a state-of-the-art, geodetic-grade GNSS receiver and logging system with a Wave Glider recently acquired by NOC to create a mobile and autonomous GNSS-based tide gauge. By the end of the project, a demonstrator GNSS Wave Glider will be available for use by NOC and the UK marine community. The system performance will be validated against tide gauge data. Further tests will involve the use of the GNSS Wave Glider to calibrate sea surface heights and significant wave heights from Cryosat-2.

  • Funder: UKRI Project Code: NE/V020471/1
    Funder Contribution: 12,390 GBP
    Partners: McGill University, University of London

    ESRC : Emily MacLeod : ES/P000592/1. This exchange provides me with the opportunity to develop my existing expertise within science identities research, and make links within the field of teacher education and teaching identities research. There is a critical shortage of teachers globally; an ongoing issue which has far-reaching and negative consequences for schools and their students. The teacher shortage in the UK, where I am conducting my PhD and where I myself was a teacher, is particularly acute. Government teacher recruitment targets in England have been missed for the last seven years. However, this shortage is not evenly spread, and raises significant social justice concerns. For example, it has been estimated that schools in England would need an additional 68,000 Black and minority ethnic teachers for the workforce to reflect the population it teaches. Science especially faces some of the worst teacher shortages. But incentives to attract more people into science teaching have so far failed to make a significant impact on this shortage, and have tended to be financial; based upon the assumption that science graduates can earn considerably more outside of the relatively low-paid role of teaching. Unlike the well-documented shortage of teachers in England, there is currently very little research into the scale of the teacher shortage in Canada, partly due to differences in governance and contexts across the different provinces. However, in contrast to the surplus of teachers seen in recent years, there are now signs of an increasing shortage of teachers. This summer in Québec, where I intend to complete this exchange, the government reported that there were over 250 empty teacher vacancies in the province, and there are concerns that Covid-19 is likely to make things worse. As in England, there is also a severe and growing underrepresentation of people of colour in Canada's teaching workforce. This is particularly worrying within the context of an increasingly diverse Canadian population. Also as in England, this shortage is not spread evenly. Science teachers are some of the most needed. However, unlike in England, teacher salaries across Canada are amongst the highest of the OECD community, and subject-specific incentives have yet to be used. The shortage of science teachers especially, seen in both England and Canada, is of particular concern given that there is a globally-recognised STEM (Science, Technology, Engineering and Mathematics) skills shortage, likely to increase due to Covid-19. This growing demand for more young people studying and working in STEM will not be met without enough qualified science teachers. Yet in order to improve this situation, we need to better understand science teacher supply patterns. To date, research into teacher supply in science (and other disciplines) has been conducted by specialists in teacher education. From this we know that science teachers report becoming teachers not because they always wanted to, but after having had positive teaching-like experiences. We also know from existing science identities research from both the host and home supervisors that social and cultural influences work to influence whether and how people see different sciences roles as 'for me' or not. This exchange will help me to develop my research and communication skills whilst conducting comparative research to develop understandings of who does, and importantly who does not, want to become a science teacher in the UK and Canada, and why. I will build upon my existing expertise in science identity development amongst young people, and learn from the expertise of Dr Gonsalves and her colleagues in science teacher identities, and how teaching-like experiences can affect these identities. Combining these fields will help me to contribute to understandings of how people's identities shape how they feel about becoming science teachers.

  • Funder: UKRI Project Code: EP/J008303/1
    Funder Contribution: 503,961 GBP
    Partners: University of Birmingham, Petrobank Energy and Resources Ltd

    Extensive unexploited resources of heavy oil and bitumen exist, for example in Canada and Venezuela, as well as heavier deposits under the North Sea UK, which could potentially be utilized as the production of conventional light crude declines. Heavy oil and bitumen are more difficult to recover than conventional crude, requiring mining or specialized in-situ recovery techniques followed by upgrading to make them suitable for use as a fuel. Toe to heel air injection (THAITM) is an in-situ combustion and upgrading process in which air is injected to a horizontal well to feed combustion of a small fraction of the oil (up to 15 %). The heat generated causes the oil to flow along the well, where thermal upgrading reactions occur, leading to upgrading of the oil (by 4-6 API). CAPRI is a catalytic add-on to THAI in which catalyst is packed around the well to effect further catalytic upgrading reactions, such as hydrotreatment, however previous studies showed that the catalyst lifetime and process effectiveness are limited by coke deposition upon the catalyst. Additionally the costs and challenges of packing the well with pelleted catalyst prior to starting up also make the CAPRI process less economically attractive. The current proposal seeks to develop cheap, effective nanoparticulate catalysts which could be conveyed into the well by air or as slurry during operation, thereby avoiding the requirement for packing the well with catalyst prior to start up and to reduce the amount of deactivation and bed blockage that occurs by coke deposition upon pelleted catalysts. Initially, readily available iron oxide nanoparticles will be tested as a base-case. Nanoparticulate catalysts will also be prepared by supporting the metal upon bacteria, using a method in which metal containing solution is reduced in the presence of a bacterial culture, followed by centrifuge and drying which kills the live bacteria. The method has the advantages of being able to utilize scrap metal solutions and thus facilitate recycling of metals from waste sources, and it may be tuned to engineer nanoparticles of desired size and properties (e.g. crystal structures). Here we seek to develop, test and scale up the production of biogenic Fe catalysts for the upgrading of oil in the THAI process. Furthermore, waste road dusts contain deposits of catalytic metals from the exhaust of vehicular catalytic converters and these will be converted into cheap mixed metal catalysts by economically proven biohydrometallurgical methods for testing in the THAI process. Key to the effectiveness of utilizing nanoparticle catalysts will be the ability to contact them with oil in the mobile oil zone and flame front of the well, where the reaction is taking place. Studies of the rock void structure will be carried out using techniques such as X-Ray microtomography. Monte Carlo and Lattice Boltzmann simulations will be used to study the pneumatic conveying of particles into the reservoir and to study penetration and distribution of particles within the void space of the rocks. Conveying of slurry catalysts and process performance will be modeled using STARS reservoir simulation software. Evaluation of the different catalysts will be performed experimentally under real conditions using a rig developed under a previous project. The effect of variables such as gas:oil ratio, temperature, pressure and gas composition will be studied experimentally, in order to select the best catalyst and understand the conditions required for maximum upgrading. The experiments will also indicate whether catalyst deactivation occurs during use and enable conditions to be tuned to avoid deactivation.

  • Funder: UKRI Project Code: EP/F012934/1
    Funder Contribution: 37,160 GBP
    Partners: University of Joensuu, University of Manitoba, Institute of Applied Technology, NGI, University of Maryland, Newcastle University, University of Patras, University of Tübingen

    This proposal will bring together sediment remediation engineers, ecotoxicologists and hydrogeochemists at an early stage of their career. They will gather for a one week launch event at Newcastle University to learn about each others conceptual understanding of sediment pollution issues and to discuss feasible solutions to these. The launch activities will include discipline hopping in oral presentations, one-on-one pairing of researchers from different disciplines explaining their research efforts to each other, practical training in the calibration and use of pollutant fate modelling tools, visits to local sites with sediment pollution, group discussion of possible solutions to international case studies of sediment pollution, and the conceptual design of better interdisciplinary models of sediment pollution and its effect on sediment-dwelling and aquatic organisms.During the launch event the researchers will submit proposals for people exchange activities with the partner institutions. Such individual visits will allow the researchers to deepen the mutual understanding of work at other institutions and in other disciplines. It is expected that future international and interdisciplinary research collaborations will emerge from such opportunities, and that the established personal contacts will continue to pay dividends throughout the career of the young participants.

  • Funder: UKRI Project Code: EP/V000683/1
    Funder Contribution: 42,298 GBP
    Partners: University of Connecticut, McGill University, University of York

    A central goal of this Overseas Travel Grant proposal is the establishment of a network of leading researchers with expertise in bone and tooth formation who share the believe that a comprehensive understanding of the nanoscale organization of both mineral and organic phase is at the heart of the development of new approaches for medical treatments. The proposed methodology is making use of the advancement of high-resolution electron imaging and spectroscopy to gain insights into the 3D structure and composition on the nanoscale. This approach is of great importance for a full understanding of the mechanisms behind structure formation and potential failure mechanisms in bones and teeth. In a recent publication (Reznikov et al., Science 2018) we were able to identify 12 levels of organisation in bone from the nano- to the macroscopic scale with a self-similar organisation pattern emerging across the different length-scales. These findings indicate the importance to understand the structure of mineralised tissue on the nanoscale. Based on this work I aim to explore the application of nanoscale imaging using advanced electron microscopy and spectroscopy to mineralised tissue such as bone cells and teeth. In both cases it is highly exciting to gain a full image of the mineral/organic assembly in healthy and disease affected tissues. The complex interplay between the mineral and the organic phases in bones and teeth appears to strongly affect the properties of the resulting biomineral with significant effects of disruptions on the nanoscale due to mineralisation affecting diseases (e.g. osteogenesis imperfecta or amelogenesis imperfecta, osteoporosis, arthritis). Hence, this work will provide a platform for future collaboration with leading life scientists and clinicians and will enable to link the high-resolution information gained by the chosen approaches with diagnostic observations. Both hosts at McGill University in Montreal and University of Connecticut in Hartford provide ideal conditions for both training and research since they have an excellent international reputation on health related materials research and provide access to an outstanding set of experimental techniques to achieve the goals of this proposal.

  • Funder: UKRI Project Code: EP/G036950/1
    Funder Contribution: 6,371,160 GBP
    Partners: TIMET UK LIMITED, WESTINGHOUSE ELECTRIC COMPANY UK LIMITED, Cummins Turbo Technologies (United Kingdom), Tata Steel (United Kingdom), Defence Science & Tech Lab DSTL, Novelis Global Technology Centre, University of Sheffield, MEL Chemicals, Alcoa Europe Flat Rolled Products, Capcis Ltd...

    This is an application for a Doctoral Training Centre (DTC) from the Universities of Sheffield and Manchester in Advanced Metallic Systems which will be directed by Prof Panos Tsakiropoulos and Prof Phil Prangnell. The proposed DTC is in response to recent reviews by the EPSRC and government/industrial bodies which have indentified the serious impact of an increasing shortage of personnel, with Doctorate level training in metallic materials, on the global competitiveness of the UK's manufacturing and defence capability. Furthermore, future applications of materials are increasingly being seen as systems that incorporate several material classes and engineered surfaces into single components, to increase performance.The primary goal of the DTC is to address these issues head on by supplying the next generation of metallics research specialists desperately needed by UK plc. We plan to attract talented students from a diverse range of physical science and engineering backgrounds and involve them with highly motivated academic staff in a variety of innovative teaching and industrial-based research activities. The programme aims to prepare graduates for global challenges in competitiveness, through an enhanced PhD programme that will:1. Challenge students and promote independent problem solving and interdiscpilnarity,2. Expose them to industrial innovation, exciting new science and the international research community, 3. Increase their fundamental skills, and broaden them as individuals in preparation for future management and leadership roles.The DTC will be aligned with major multidisciplinary research centres and with the strong involvement of NAMTEC (the National Metals Technology Centre) and over twenty companies across many sectors. Learning will be up to date and industrially relevant, as well as benefitting from access to 30M of state-of-the art research facilities.Research projects will be targeted at high value UK strategic technology sectors, such as aerospace, automotive, power generation, renewables, and defence and aim to:1. Provide a multidisciplinary approach to the whole product life cycle; from raw material, to semi finished products to forming, joining, surface engineering/coating, in service performance and recycling via the wide skill base of the combined academic team and industrial collaborators.2. Improve the basic understanding of how nano-, micro- and meso-scale physical processes control material microstructures and thereby properties, in order to radically improve industrial processes, and advance techniques of modelling and process simulation.3. Develop new innovative processes and processing routes, i.e. disruptive or transformative technologies.4. Address challenges in energy by the development of advanced metallic solutions and manufacturing technologies for nuclear power, reduced CO2 emissions, and renewable energy. 5. Study issues and develop techniques for interfacing metallic materials into advanced hybrid structures with polymers, laminates, foams and composites etc. 6. Develop novel coatings and surface treatments to protect new light alloys and hybrid structures, in hostile environments, reduce environmental impact of chemical treatments and add value and increase functionality. 7. Reduce environmental impact through reductions in process energy costs and concurrently develop new materials that address the environmental challenges in weight saving and recyclability technologies. This we believe will produce PhD graduates with a superior skills base enabling problem solving and leadership expertise well beyond a conventional PhD project, i.e. a DTC with a structured programme and stimulating methods of engagement, will produce internationally competitive doctoral graduates that can engage with today's diverse metallurgical issues and contribute to the development of a high level knowledge-based UK manufacturing sector.

  • Funder: UKRI Project Code: NE/I009906/1
    Funder Contribution: 625,765 GBP
    Partners: AUSTRALIAN NATIONAL UNIVERSITY, EA, Willis Limited, University of Southampton, University of Ottawa, UKCIP

    The vulnerability of extensive near-coastal habitation, infrastructure, and trade makes global sea-level rise a major global concern for society. The UK coastline, for example, has ~£150 billion of assets at risk from coastal flooding, of which with £75 billion in London alone. Consequently, most nations have developed/ implemented protection plans, which commonly use ranges of sea-level rise estimates from global warming scenarios such as those published by IPCC, supplemented by worst-case values from limited geological studies. UKCP09 provides the most up-to-date guidance on UK sea-level rise scenarios and includes a low probability, high impact range for maximum UK sea level rise for use in contingency planning and in considerations regarding the limits to potential adaptation (the H++ scenario). UKCP09 emphasises that the H++ scenario is unlikely for the next century, but it does introduce significant concerns when planning for longer-term future sea-level rise. Currently, the range for H++ is set to 0.9-1.9 m of rise by the end of the 21st century. This range of uncertainty is large (with vast planning and financial implications), and - more critically - it has no robust statistical basis. It is important, therefore, to better understand the processes controlling the maximum sea-level rise estimate for the future on these time-scales. This forms the overarching motivation for the consortium project proposed here. iGlass is a broad-ranging interdisciplinary project that will integrate field data and modelling, in order to study the response of ice volume/sea level to different climate states during the last five interglacials, which include times with significantly higher sea level than the present. This will identify the likelihood of reduced ice cover over Greenland and West Antarctica, an important constraint on future sea-level projections. A key outcome will be to place sound limits on the likely ice-volume contribution to maximum sea-level rise estimates for the future. Our project is guided by three key questions: Q1. What do palaeo-sea level positions reveal about the global ice-volume/sea-level changes during a range of different interglacial climate states? Q2. What were the rates of sea-level rise in past interglacials, and to what extent are these relevant for future change, given the different climate forcing? Q3. Under a range of given (IPCC) climate projection scenarios, what are the projected limits to maximum sea-level rise over the next few centuries when accounting for ice-sheet contributions? The research will directly inform decision-making processes regarding flood risk management in the UK and abroad. In this respect, the project benefits from the close co-operation with scientists and practitioners in the UK Environment Agency, UKCIP, the UK insurance industry, as well as the wider global academic and user communities.

  • Funder: UKRI Project Code: EP/V043811/1
    Funder Contribution: 497,214 GBP
    Partners: University of Toronto, University of Liverpool

    Coronaviruses are transmitted from an infectious individual through large respiratory droplets generated by coughing, sneezing or speaking. These infectious droplets are then transmitted to the mucosal surfaces of a recipient through inhalation of the aerosol or by contact with contaminated fomites such as surfaces or other objects. In healthcare settings, personal protective equipment (PPE) plays a crucial role in interrupting the transmission of highly communicable diseases such as COVID19 from patients to healthcare workers (HCWs). However, research has shown that PPE can also act as a fomite during the donning and doffing process as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can survive on these surfaces for up to three days. This creates a need for more effective PPE materials that can provide antiviral protection. In this proposal we aim to develop a dual action antiviral/antifouling coating to lower the risk of transmission of the SARS-CoV-2 to HCWs from COVID19 patients. This project will deliver antiviral/antifouling coatings that can be readily applied to PPE surfaces such as faceshields that are likely to encounter a high level of viral load and would be of great benefit to the health of clinical staff. Furthermore, this project has embedded into its planning a rapid pathway for optimisation, translation, and upscaling of manufacture to deliver a low-cost technology within a short timescale.

  • Funder: UKRI Project Code: EP/V011855/1
    Funder Contribution: 4,436,180 GBP
    Partners: Marine Minerals Ltd, Apto Solutions, Bullitt, Natural History Museum, Cornish Mining World Heritage, Ravel, Mkango Resources Limited, Cornwall Resources Limited, Critical Minerals Association, Roskill Information Services Ltd...

    The Circular Economy (CE) is a revolutionary alternative to a traditional linear, make-use-dispose economy. It is based on the central principle of maintaining continuous flows of resources at their highest value for the longest period and then recovering, cascading and regenerating products and materials at the end of each life cycle. Metals are ideal flows for a circular economy. With careful stewardship and good technology, metals mined from the Earth can be reused indefinitely. Technology metals (techmetals) are an essential, distinct, subset of specialist metals. Although they are used in much smaller quantities than industrial metals such as iron and aluminium, each techmetal has its own specific and special properties that give it essential functions in devices ranging from smart phones, batteries, wind turbines and solar cells to electric vehicles. Techmetals are thus essential enablers of a future circular, low carbon economy and demand for many is increasing rapidly. E.g., to meet the UK's 2050 ambition for offshore wind turbines will require 10 years' worth of global neodymium production. To replace all UK-based vehicles with electric vehicles would require 200% of cobalt and 75% of lithium currently produced globally each year. The UK is 100% reliant on imports of techmetals including from countries that represent geopolitical risks. Some techmetals are therefore called Critical Raw Materials (high economic importance and high risk of supply disruption). Only four of the 27 raw materials considered critical by the EU have an end-of-life recycling input rate higher than 10%. Our UKRI TechMet CE Centre brings together for the first time world-leading researchers to maximise opportunities around the provision of techmetals from primary and secondary sources, and lead materials stewardship, creating a National Techmetals Circular Economy Roadmap to accelerate us towards a circular economy. This will help the UK meet its Industrial Strategy Clean Growth agenda and its ambitious UK 2050 climate change targets with secure and environmentally-acceptable supplies of techmetals. There are many challenges to a future techmetal circular economy. With growing demand, new mining is needed and we must keep the environmental footprint of this primary production as low as possible. Materials stewardship of techmetals is difficult because their fate is often difficult to track. Most arrive in the UK 'hidden' in complex products from which they are difficult to recover. Collection is inefficient, consumers may not feel incentivised to recycle, and policy and legislative initiatives such as Extended Producer Responsibility focus on large volume metals rather than small quantity techmetals. There is a lack of end-to-end visibility and connection between different parts of techmetal value chains. The TechMet consortium brings together the Universities of Exeter, Birmingham, Leicester, Manchester and the British Geological Survey who are already working on how to improve the raw materials cycle, manufacture goods to be re-used and recycled, recycle complex goods such as batteries and use and re-use equipment for as long as possible before it needs recycling. One of our first tasks is to track the current flows of techmetals through the UK economy, which although fundamental, is poorly known. The Centre will conduct new interdisciplinary research on interventions to improve each stage in the cycle and join up the value chain - raw materials can be newly mined and recycled, and manufacturing technology can be linked directly to re-use and recycling. The environmental footprint of our techmetals will be evaluated. Business, regulatory and social experts will recommend how the UK can best put all these stages together to make a new techmetals circular economy and produce a strategy for its implementation.

  • Funder: UKRI Project Code: EP/S023836/1
    Funder Contribution: 5,530,580 GBP
    Partners: AVID Vehicles Ltd, Saint Gobains Isover, Kurt J Lesker Co Ltd, Offshore Renewable Energy Catapult, University of Cambridge, Durham County Council, Equiwatt Limited, université du Luxembourg, YeadonIP Ltd, Knowledge Transfer Network Limited...

    The EPSRC Centre for Doctoral Training in Renewable Energy Northeast Universities (ReNU) is driven by industry and market needs, which indicate unprecedented growth in renewable and distributed energy to 2050. This growth is underpinned by global demand for electricity which will outstrip growth in demand for other sources by more than two to one (The drivers of global energy demand growth to 2050, 2016, McKinsey). A significant part of this demand will arise from vast numbers of distributed, but interconnected devices (estimated to reach 40 billion by 2024) serving sectors such as healthcare (for ageing populations) and personal transport (for reduced carbon dioxide emission). The distinctive remit of ReNU therefore is to focus on materials innovations for small-to-medium scale energy conversion and storage technologies that are sustainable and highly scalable. ReNU will be delivered by Northumbria, Newcastle and Durham Universities, whose world-leading expertise and excellent links with industry in this area have been recognised by the recent award of the North East Centre for Energy Materials (NECEM, award number: EP/R021503/1). This research-focused programme will be highly complementary to ReNU which is a training-focused programme. A key strength of the ReNU consortium is the breadth of expertise across the energy sector, including: thin film and new materials; direct solar energy conversion; turbines for wind, wave and tidal energy; piezoelectric and thermoelectric devices; water splitting; CO2 valorisation; batteries and fuel cells. Working closely with a balanced portfolio of 36 partners that includes multinational companies, small and medium size enterprises and local Government organisations, the ReNU team has designed a compelling doctoral training programme which aims to engender entrepreneurial skills which will drive UK regional and national productivity in the area of Clean Growth, one of four Grand Challenges identified in the UK Government's recent Industrial Strategy. The same group of partners will also provide significant input to the ReNU in the form of industrial supervision, training for doctoral candidates and supervisors, and access to facilities and equipment. Success in renewable energy and sustainable distributed energy fundamentally requires a whole systems approach as well as understanding of political, social and technical contexts. ReNU's doctoral training is thus naturally suited to a cohort approach in which cross-fertilisation of knowledge and ideas is necessary and embedded. The training programme also aims to address broader challenges facing wider society including unconscious bias training and outreach to address diversity issues in science, technology, engineering and mathematics subjects and industries. Furthermore, external professional accreditation will be sought for ReNU from the Institute of Physics, Royal Society of Chemistry and Institute of Engineering Technology, thus providing a starting point from which doctoral graduates will work towards "Chartered" status. The combination of an industry-driven doctoral training programme to meet identifiable market needs, strong industrial commitment through the provision of training, facilities and supervision, an established platform of research excellence in energy materials between the institutions and unique training opportunities that include internationalisation and professional accreditation, creates a transformative programme to drive forward UK innovation in renewable and sustainable distributed energy.

Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
565 Projects, page 1 of 57
  • Funder: UKRI Project Code: NE/K005421/1
    Funder Contribution: 337,728 GBP
    Partners: AXYS, NOC, Liquid Robotics

    Variations in sea level have a great environmental impact. They modulate coastal deposition, erosion and morphology, regulate heat and salt fluxes in estuaries, bays and ground waters, and control the dynamics of coastal ecosystems. Sea level variability has importance for coastal navigation, the building of coastal infrastructure, and the management of waste. The challenges of measuring, understanding and predicting sea level variations take particular relevance within the backdrop of global sea level rise, which might lead to the displacement of hundreds of millions of people by the end of this century. Sea level measurement relies primarily on the use of coastal tide gauges and satellite altimetry. Tide gauges provide sea levels at fine time resolutions (up to one second), but collect data only in coastal areas, and are irregularly distributed, with large gaps in the southern hemisphere and at high latitudes. Satellite altimetry, in contrast, has poor time resolution (ten days or longer), but provides near global coverage at moderate spatial resolutions (10-to-100 kilometres). Altimetric sea level products are problematic near the coast for reasons such as uncertainties in applying sea state bias corrections, errors in coastal tidal models, and large geoid gradients. The complicated shoreline geometry means that the raw altimeter data have to either undergo special transformations to provide more reliable measurements of sea level or be rejected. Developments in GPS measurements from buoys are now making it possible to determine sea surface heights with accuracy comparable to that of altimetry. In combination with coastal tide gauges, GPS buoys could be used as the nodes of a global sea level monitoring network extending beyond the coast. However, GPS buoys have several downsides. They are difficult and expensive to deploy, maintain, and recover, and, like conventional tide gauges, provide time series only at individual points in the ocean. This proposal focuses on the development of a unique system that overcomes these shortcomings. We propose a technology-led project to integrate Global Navigation Satellite Systems (GNSS i.e. encompassing GPS, GLONASS and, possibly, Galileo) technology with a state-of-the-art, unmanned surface vehicle: a Wave Glider. The glider farms the ocean wave field for propulsion, uses solar power to run on board equipment, and uses satellite communications for remote navigation and data transmission. A Wave Glider equipped with a high-accuracy GNSS receiver and data logger is effectively a fully autonomous, mobile, floating tide gauge. Missions and routes can be preprogrammed as well as changed remotely. Because the glider can be launched and retrieved from land or from a small boat, the costs associated with deployment, maintenance and recovery of the GNSS Wave Glider are comparatively small. GNSS Wave Glider technology promises a level of versatility well beyond that of existing ways of measuring sea levels. Potential applications of a GNSS Wave Glider include: 1) measurement of mean sea level and monitoring of sea level variations worldwide, 2) linking of offshore and onshore vertical datums, 3) calibration of satellite altimetry, notably in support of current efforts to reinterpret existing altimetric data near the coast, but also in remote and difficult to access areas, 4) determination of regional geoid variations, 5) ocean model improvement. The main thrust of this project is to integrate a state-of-the-art, geodetic-grade GNSS receiver and logging system with a Wave Glider recently acquired by NOC to create a mobile and autonomous GNSS-based tide gauge. By the end of the project, a demonstrator GNSS Wave Glider will be available for use by NOC and the UK marine community. The system performance will be validated against tide gauge data. Further tests will involve the use of the GNSS Wave Glider to calibrate sea surface heights and significant wave heights from Cryosat-2.

  • Funder: UKRI Project Code: NE/V020471/1
    Funder Contribution: 12,390 GBP
    Partners: McGill University, University of London

    ESRC : Emily MacLeod : ES/P000592/1. This exchange provides me with the opportunity to develop my existing expertise within science identities research, and make links within the field of teacher education and teaching identities research. There is a critical shortage of teachers globally; an ongoing issue which has far-reaching and negative consequences for schools and their students. The teacher shortage in the UK, where I am conducting my PhD and where I myself was a teacher, is particularly acute. Government teacher recruitment targets in England have been missed for the last seven years. However, this shortage is not evenly spread, and raises significant social justice concerns. For example, it has been estimated that schools in England would need an additional 68,000 Black and minority ethnic teachers for the workforce to reflect the population it teaches. Science especially faces some of the worst teacher shortages. But incentives to attract more people into science teaching have so far failed to make a significant impact on this shortage, and have tended to be financial; based upon the assumption that science graduates can earn considerably more outside of the relatively low-paid role of teaching. Unlike the well-documented shortage of teachers in England, there is currently very little research into the scale of the teacher shortage in Canada, partly due to differences in governance and contexts across the different provinces. However, in contrast to the surplus of teachers seen in recent years, there are now signs of an increasing shortage of teachers. This summer in Québec, where I intend to complete this exchange, the government reported that there were over 250 empty teacher vacancies in the province, and there are concerns that Covid-19 is likely to make things worse. As in England, there is also a severe and growing underrepresentation of people of colour in Canada's teaching workforce. This is particularly worrying within the context of an increasingly diverse Canadian population. Also as in England, this shortage is not spread evenly. Science teachers are some of the most needed. However, unlike in England, teacher salaries across Canada are amongst the highest of the OECD community, and subject-specific incentives have yet to be used. The shortage of science teachers especially, seen in both England and Canada, is of particular concern given that there is a globally-recognised STEM (Science, Technology, Engineering and Mathematics) skills shortage, likely to increase due to Covid-19. This growing demand for more young people studying and working in STEM will not be met without enough qualified science teachers. Yet in order to improve this situation, we need to better understand science teacher supply patterns. To date, research into teacher supply in science (and other disciplines) has been conducted by specialists in teacher education. From this we know that science teachers report becoming teachers not because they always wanted to, but after having had positive teaching-like experiences. We also know from existing science identities research from both the host and home supervisors that social and cultural influences work to influence whether and how people see different sciences roles as 'for me' or not. This exchange will help me to develop my research and communication skills whilst conducting comparative research to develop understandings of who does, and importantly who does not, want to become a science teacher in the UK and Canada, and why. I will build upon my existing expertise in science identity development amongst young people, and learn from the expertise of Dr Gonsalves and her colleagues in science teacher identities, and how teaching-like experiences can affect these identities. Combining these fields will help me to contribute to understandings of how people's identities shape how they feel about becoming science teachers.

  • Funder: UKRI Project Code: EP/J008303/1
    Funder Contribution: 503,961 GBP
    Partners: University of Birmingham, Petrobank Energy and Resources Ltd

    Extensive unexploited resources of heavy oil and bitumen exist, for example in Canada and Venezuela, as well as heavier deposits under the North Sea UK, which could potentially be utilized as the production of conventional light crude declines. Heavy oil and bitumen are more difficult to recover than conventional crude, requiring mining or specialized in-situ recovery techniques followed by upgrading to make them suitable for use as a fuel. Toe to heel air injection (THAITM) is an in-situ combustion and upgrading process in which air is injected to a horizontal well to feed combustion of a small fraction of the oil (up to 15 %). The heat generated causes the oil to flow along the well, where thermal upgrading reactions occur, leading to upgrading of the oil (by 4-6 API). CAPRI is a catalytic add-on to THAI in which catalyst is packed around the well to effect further catalytic upgrading reactions, such as hydrotreatment, however previous studies showed that the catalyst lifetime and process effectiveness are limited by coke deposition upon the catalyst. Additionally the costs and challenges of packing the well with pelleted catalyst prior to starting up also make the CAPRI process less economically attractive. The current proposal seeks to develop cheap, effective nanoparticulate catalysts which could be conveyed into the well by air or as slurry during operation, thereby avoiding the requirement for packing the well with catalyst prior to start up and to reduce the amount of deactivation and bed blockage that occurs by coke deposition upon pelleted catalysts. Initially, readily available iron oxide nanoparticles will be tested as a base-case. Nanoparticulate catalysts will also be prepared by supporting the metal upon bacteria, using a method in which metal containing solution is reduced in the presence of a bacterial culture, followed by centrifuge and drying which kills the live bacteria. The method has the advantages of being able to utilize scrap metal solutions and thus facilitate recycling of metals from waste sources, and it may be tuned to engineer nanoparticles of desired size and properties (e.g. crystal structures). Here we seek to develop, test and scale up the production of biogenic Fe catalysts for the upgrading of oil in the THAI process. Furthermore, waste road dusts contain deposits of catalytic metals from the exhaust of vehicular catalytic converters and these will be converted into cheap mixed metal catalysts by economically proven biohydrometallurgical methods for testing in the THAI process. Key to the effectiveness of utilizing nanoparticle catalysts will be the ability to contact them with oil in the mobile oil zone and flame front of the well, where the reaction is taking place. Studies of the rock void structure will be carried out using techniques such as X-Ray microtomography. Monte Carlo and Lattice Boltzmann simulations will be used to study the pneumatic conveying of particles into the reservoir and to study penetration and distribution of particles within the void space of the rocks. Conveying of slurry catalysts and process performance will be modeled using STARS reservoir simulation software. Evaluation of the different catalysts will be performed experimentally under real conditions using a rig developed under a previous project. The effect of variables such as gas:oil ratio, temperature, pressure and gas composition will be studied experimentally, in order to select the best catalyst and understand the conditions required for maximum upgrading. The experiments will also indicate whether catalyst deactivation occurs during use and enable conditions to be tuned to avoid deactivation.

  • Funder: UKRI Project Code: EP/F012934/1
    Funder Contribution: 37,160 GBP
    Partners: University of Joensuu, University of Manitoba, Institute of Applied Technology, NGI, University of Maryland, Newcastle University, University of Patras, University of Tübingen

    This proposal will bring together sediment remediation engineers, ecotoxicologists and hydrogeochemists at an early stage of their career. They will gather for a one week launch event at Newcastle University to learn about each others conceptual understanding of sediment pollution issues and to discuss feasible solutions to these. The launch activities will include discipline hopping in oral presentations, one-on-one pairing of researchers from different disciplines explaining their research efforts to each other, practical training in the calibration and use of pollutant fate modelling tools, visits to local sites with sediment pollution, group discussion of possible solutions to international case studies of sediment pollution, and the conceptual design of better interdisciplinary models of sediment pollution and its effect on sediment-dwelling and aquatic organisms.During the launch event the researchers will submit proposals for people exchange activities with the partner institutions. Such individual visits will allow the researchers to deepen the mutual understanding of work at other institutions and in other disciplines. It is expected that future international and interdisciplinary research collaborations will emerge from such opportunities, and that the established personal contacts will continue to pay dividends throughout the career of the young participants.

  • Funder: UKRI Project Code: EP/V000683/1
    Funder Contribution: 42,298 GBP
    Partners: University of Connecticut, McGill University, University of York

    A central goal of this Overseas Travel Grant proposal is the establishment of a network of leading researchers with expertise in bone and tooth formation who share the believe that a comprehensive understanding of the nanoscale organization of both mineral and organic phase is at the heart of the development of new approaches for medical treatments. The proposed methodology is making use of the advancement of high-resolution electron imaging and spectroscopy to gain insights into the 3D structure and composition on the nanoscale. This approach is of great importance for a full understanding of the mechanisms behind structure formation and potential failure mechanisms in bones and teeth. In a recent publication (Reznikov et al., Science 2018) we were able to identify 12 levels of organisation in bone from the nano- to the macroscopic scale with a self-similar organisation pattern emerging across the different length-scales. These findings indicate the importance to understand the structure of mineralised tissue on the nanoscale. Based on this work I aim to explore the application of nanoscale imaging using advanced electron microscopy and spectroscopy to mineralised tissue such as bone cells and teeth. In both cases it is highly exciting to gain a full image of the mineral/organic assembly in healthy and disease affected tissues. The complex interplay between the mineral and the organic phases in bones and teeth appears to strongly affect the properties of the resulting biomineral with significant effects of disruptions on the nanoscale due to mineralisation affecting diseases (e.g. osteogenesis imperfecta or amelogenesis imperfecta, osteoporosis, arthritis). Hence, this work will provide a platform for future collaboration with leading life scientists and clinicians and will enable to link the high-resolution information gained by the chosen approaches with diagnostic observations. Both hosts at McGill University in Montreal and University of Connecticut in Hartford provide ideal conditions for both training and research since they have an excellent international reputation on health related materials research and provide access to an outstanding set of experimental techniques to achieve the goals of this proposal.

  • Funder: UKRI Project Code: EP/G036950/1
    Funder Contribution: 6,371,160 GBP
    Partners: TIMET UK LIMITED, WESTINGHOUSE ELECTRIC COMPANY UK LIMITED, Cummins Turbo Technologies (United Kingdom), Tata Steel (United Kingdom), Defence Science & Tech Lab DSTL, Novelis Global Technology Centre, University of Sheffield, MEL Chemicals, Alcoa Europe Flat Rolled Products, Capcis Ltd...

    This is an application for a Doctoral Training Centre (DTC) from the Universities of Sheffield and Manchester in Advanced Metallic Systems which will be directed by Prof Panos Tsakiropoulos and Prof Phil Prangnell. The proposed DTC is in response to recent reviews by the EPSRC and government/industrial bodies which have indentified the serious impact of an increasing shortage of personnel, with Doctorate level training in metallic materials, on the global competitiveness of the UK's manufacturing and defence capability. Furthermore, future applications of materials are increasingly being seen as systems that incorporate several material classes and engineered surfaces into single components, to increase performance.The primary goal of the DTC is to address these issues head on by supplying the next generation of metallics research specialists desperately needed by UK plc. We plan to attract talented students from a diverse range of physical science and engineering backgrounds and involve them with highly motivated academic staff in a variety of innovative teaching and industrial-based research activities. The programme aims to prepare graduates for global challenges in competitiveness, through an enhanced PhD programme that will:1. Challenge students and promote independent problem solving and interdiscpilnarity,2. Expose them to industrial innovation, exciting new science and the international research community, 3. Increase their fundamental skills, and broaden them as individuals in preparation for future management and leadership roles.The DTC will be aligned with major multidisciplinary research centres and with the strong involvement of NAMTEC (the National Metals Technology Centre) and over twenty companies across many sectors. Learning will be up to date and industrially relevant, as well as benefitting from access to 30M of state-of-the art research facilities.Research projects will be targeted at high value UK strategic technology sectors, such as aerospace, automotive, power generation, renewables, and defence and aim to:1. Provide a multidisciplinary approach to the whole product life cycle; from raw material, to semi finished products to forming, joining, surface engineering/coating, in service performance and recycling via the wide skill base of the combined academic team and industrial collaborators.2. Improve the basic understanding of how nano-, micro- and meso-scale physical processes control material microstructures and thereby properties, in order to radically improve industrial processes, and advance techniques of modelling and process simulation.3. Develop new innovative processes and processing routes, i.e. disruptive or transformative technologies.4. Address challenges in energy by the development of advanced metallic solutions and manufacturing technologies for nuclear power, reduced CO2 emissions, and renewable energy. 5. Study issues and develop techniques for interfacing metallic materials into advanced hybrid structures with polymers, laminates, foams and composites etc. 6. Develop novel coatings and surface treatments to protect new light alloys and hybrid structures, in hostile environments, reduce environmental impact of chemical treatments and add value and increase functionality. 7. Reduce environmental impact through reductions in process energy costs and concurrently develop new materials that address the environmental challenges in weight saving and recyclability technologies. This we believe will produce PhD graduates with a superior skills base enabling problem solving and leadership expertise well beyond a conventional PhD project, i.e. a DTC with a structured programme and stimulating methods of engagement, will produce internationally competitive doctoral graduates that can engage with today's diverse metallurgical issues and contribute to the development of a high level knowledge-based UK manufacturing sector.

  • Funder: UKRI Project Code: NE/I009906/1
    Funder Contribution: 625,765 GBP
    Partners: AUSTRALIAN NATIONAL UNIVERSITY, EA, Willis Limited, University of Southampton, University of Ottawa, UKCIP

    The vulnerability of extensive near-coastal habitation, infrastructure, and trade makes global sea-level rise a major global concern for society. The UK coastline, for example, has ~£150 billion of assets at risk from coastal flooding, of which with £75 billion in London alone. Consequently, most nations have developed/ implemented protection plans, which commonly use ranges of sea-level rise estimates from global warming scenarios such as those published by IPCC, supplemented by worst-case values from limited geological studies. UKCP09 provides the most up-to-date guidance on UK sea-level rise scenarios and includes a low probability, high impact range for maximum UK sea level rise for use in contingency planning and in considerations regarding the limits to potential adaptation (the H++ scenario). UKCP09 emphasises that the H++ scenario is unlikely for the next century, but it does introduce significant concerns when planning for longer-term future sea-level rise. Currently, the range for H++ is set to 0.9-1.9 m of rise by the end of the 21st century. This range of uncertainty is large (with vast planning and financial implications), and - more critically - it has no robust statistical basis. It is important, therefore, to better understand the processes controlling the maximum sea-level rise estimate for the future on these time-scales. This forms the overarching motivation for the consortium project proposed here. iGlass is a broad-ranging interdisciplinary project that will integrate field data and modelling, in order to study the response of ice volume/sea level to different climate states during the last five interglacials, which include times with significantly higher sea level than the present. This will identify the likelihood of reduced ice cover over Greenland and West Antarctica, an important constraint on future sea-level projections. A key outcome will be to place sound limits on the likely ice-volume contribution to maximum sea-level rise estimates for the future. Our project is guided by three key questions: Q1. What do palaeo-sea level positions reveal about the global ice-volume/sea-level changes during a range of different interglacial climate states? Q2. What were the rates of sea-level rise in past interglacials, and to what extent are these relevant for future change, given the different climate forcing? Q3. Under a range of given (IPCC) climate projection scenarios, what are the projected limits to maximum sea-level rise over the next few centuries when accounting for ice-sheet contributions? The research will directly inform decision-making processes regarding flood risk management in the UK and abroad. In this respect, the project benefits from the close co-operation with scientists and practitioners in the UK Environment Agency, UKCIP, the UK insurance industry, as well as the wider global academic and user communities.

  • Funder: UKRI Project Code: EP/V043811/1
    Funder Contribution: 497,214 GBP
    Partners: University of Toronto, University of Liverpool

    Coronaviruses are transmitted from an infectious individual through large respiratory droplets generated by coughing, sneezing or speaking. These infectious droplets are then transmitted to the mucosal surfaces of a recipient through inhalation of the aerosol or by contact with contaminated fomites such as surfaces or other objects. In healthcare settings, personal protective equipment (PPE) plays a crucial role in interrupting the transmission of highly communicable diseases such as COVID19 from patients to healthcare workers (HCWs). However, research has shown that PPE can also act as a fomite during the donning and doffing process as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can survive on these surfaces for up to three days. This creates a need for more effective PPE materials that can provide antiviral protection. In this proposal we aim to develop a dual action antiviral/antifouling coating to lower the risk of transmission of the SARS-CoV-2 to HCWs from COVID19 patients. This project will deliver antiviral/antifouling coatings that can be readily applied to PPE surfaces such as faceshields that are likely to encounter a high level of viral load and would be of great benefit to the health of clinical staff. Furthermore, this project has embedded into its planning a rapid pathway for optimisation, translation, and upscaling of manufacture to deliver a low-cost technology within a short timescale.

  • Funder: UKRI Project Code: EP/V011855/1
    Funder Contribution: 4,436,180 GBP
    Partners: Marine Minerals Ltd, Apto Solutions, Bullitt, Natural History Museum, Cornish Mining World Heritage, Ravel, Mkango Resources Limited, Cornwall Resources Limited, Critical Minerals Association, Roskill Information Services Ltd...

    The Circular Economy (CE) is a revolutionary alternative to a traditional linear, make-use-dispose economy. It is based on the central principle of maintaining continuous flows of resources at their highest value for the longest period and then recovering, cascading and regenerating products and materials at the end of each life cycle. Metals are ideal flows for a circular economy. With careful stewardship and good technology, metals mined from the Earth can be reused indefinitely. Technology metals (techmetals) are an essential, distinct, subset of specialist metals. Although they are used in much smaller quantities than industrial metals such as iron and aluminium, each techmetal has its own specific and special properties that give it essential functions in devices ranging from smart phones, batteries, wind turbines and solar cells to electric vehicles. Techmetals are thus essential enablers of a future circular, low carbon economy and demand for many is increasing rapidly. E.g., to meet the UK's 2050 ambition for offshore wind turbines will require 10 years' worth of global neodymium production. To replace all UK-based vehicles with electric vehicles would require 200% of cobalt and 75% of lithium currently produced globally each year. The UK is 100% reliant on imports of techmetals including from countries that represent geopolitical risks. Some techmetals are therefore called Critical Raw Materials (high economic importance and high risk of supply disruption). Only four of the 27 raw materials considered critical by the EU have an end-of-life recycling input rate higher than 10%. Our UKRI TechMet CE Centre brings together for the first time world-leading researchers to maximise opportunities around the provision of techmetals from primary and secondary sources, and lead materials stewardship, creating a National Techmetals Circular Economy Roadmap to accelerate us towards a circular economy. This will help the UK meet its Industrial Strategy Clean Growth agenda and its ambitious UK 2050 climate change targets with secure and environmentally-acceptable supplies of techmetals. There are many challenges to a future techmetal circular economy. With growing demand, new mining is needed and we must keep the environmental footprint of this primary production as low as possible. Materials stewardship of techmetals is difficult because their fate is often difficult to track. Most arrive in the UK 'hidden' in complex products from which they are difficult to recover. Collection is inefficient, consumers may not feel incentivised to recycle, and policy and legislative initiatives such as Extended Producer Responsibility focus on large volume metals rather than small quantity techmetals. There is a lack of end-to-end visibility and connection between different parts of techmetal value chains. The TechMet consortium brings together the Universities of Exeter, Birmingham, Leicester, Manchester and the British Geological Survey who are already working on how to improve the raw materials cycle, manufacture goods to be re-used and recycled, recycle complex goods such as batteries and use and re-use equipment for as long as possible before it needs recycling. One of our first tasks is to track the current flows of techmetals through the UK economy, which although fundamental, is poorly known. The Centre will conduct new interdisciplinary research on interventions to improve each stage in the cycle and join up the value chain - raw materials can be newly mined and recycled, and manufacturing technology can be linked directly to re-use and recycling. The environmental footprint of our techmetals will be evaluated. Business, regulatory and social experts will recommend how the UK can best put all these stages together to make a new techmetals circular economy and produce a strategy for its implementation.

  • Funder: UKRI Project Code: EP/S023836/1
    Funder Contribution: 5,530,580 GBP
    Partners: AVID Vehicles Ltd, Saint Gobains Isover, Kurt J Lesker Co Ltd, Offshore Renewable Energy Catapult, University of Cambridge, Durham County Council, Equiwatt Limited, université du Luxembourg, YeadonIP Ltd, Knowledge Transfer Network Limited...

    The EPSRC Centre for Doctoral Training in Renewable Energy Northeast Universities (ReNU) is driven by industry and market needs, which indicate unprecedented growth in renewable and distributed energy to 2050. This growth is underpinned by global demand for electricity which will outstrip growth in demand for other sources by more than two to one (The drivers of global energy demand growth to 2050, 2016, McKinsey). A significant part of this demand will arise from vast numbers of distributed, but interconnected devices (estimated to reach 40 billion by 2024) serving sectors such as healthcare (for ageing populations) and personal transport (for reduced carbon dioxide emission). The distinctive remit of ReNU therefore is to focus on materials innovations for small-to-medium scale energy conversion and storage technologies that are sustainable and highly scalable. ReNU will be delivered by Northumbria, Newcastle and Durham Universities, whose world-leading expertise and excellent links with industry in this area have been recognised by the recent award of the North East Centre for Energy Materials (NECEM, award number: EP/R021503/1). This research-focused programme will be highly complementary to ReNU which is a training-focused programme. A key strength of the ReNU consortium is the breadth of expertise across the energy sector, including: thin film and new materials; direct solar energy conversion; turbines for wind, wave and tidal energy; piezoelectric and thermoelectric devices; water splitting; CO2 valorisation; batteries and fuel cells. Working closely with a balanced portfolio of 36 partners that includes multinational companies, small and medium size enterprises and local Government organisations, the ReNU team has designed a compelling doctoral training programme which aims to engender entrepreneurial skills which will drive UK regional and national productivity in the area of Clean Growth, one of four Grand Challenges identified in the UK Government's recent Industrial Strategy. The same group of partners will also provide significant input to the ReNU in the form of industrial supervision, training for doctoral candidates and supervisors, and access to facilities and equipment. Success in renewable energy and sustainable distributed energy fundamentally requires a whole systems approach as well as understanding of political, social and technical contexts. ReNU's doctoral training is thus naturally suited to a cohort approach in which cross-fertilisation of knowledge and ideas is necessary and embedded. The training programme also aims to address broader challenges facing wider society including unconscious bias training and outreach to address diversity issues in science, technology, engineering and mathematics subjects and industries. Furthermore, external professional accreditation will be sought for ReNU from the Institute of Physics, Royal Society of Chemistry and Institute of Engineering Technology, thus providing a starting point from which doctoral graduates will work towards "Chartered" status. The combination of an industry-driven doctoral training programme to meet identifiable market needs, strong industrial commitment through the provision of training, facilities and supervision, an established platform of research excellence in energy materials between the institutions and unique training opportunities that include internationalisation and professional accreditation, creates a transformative programme to drive forward UK innovation in renewable and sustainable distributed energy.