Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
15 Projects, page 2 of 2

  • Canada
  • UK Research and Innovation
  • 2015

10
arrow_drop_down
  • Funder: UKRI Project Code: NE/M011429/1
    Funder Contribution: 549,872 GBP
    Partners: Greenland Rare Earth Projects Ltd, SRK Consulting UK Ltd, HGF, Tanbreez Mining Greenland A/S, Oakdene Hollins (United Kingdom), Umwelt und Ingenieurtechnik GmbH, Mkango Resources Limited, FAPESP, UCT, Maakrish Ltd...

    Rare earth elements (REE) are the headline of the critical metals security of supply agenda. All the REE were defined as critical by the European Union in 2010, and in subsequent analysis in 2014. Similar projects in the UK and USA have highlighted 'heavy' REE (HREE - europium through to lutetium) as the metals most likely to be at risk of supply disruption and in short supply in the near future. The REE are ubiquitous within modern technologies, including computers and low energy lighting, energy storage devices, large wind turbines and smart materials, making their supply vital to UK society. The challenge is to develop new environmentally friendly and economically viable, neodymium (Nd) and HREE deposits so that use of REE in new and green technologies can continue to expand. The principal aims of this project are to understand the mobility and concentration of Nd and HREE in natural systems and to investigate new processes that will lower the environmental impact of REE extraction and recovery. By concentrating on the critical REE, the research will be wide ranging in the deposits and processing techniques considered. It gives NERC and the UK a world-leading research consortium on critical REE, concentrating on deposit types identified in the catalyst phase as most likely to have low environmental impact, and on research that bridges the two goals of the SoS programme. The project brings together two groups from the preceding catalyst projects (GEM-CRE, MM-FREE) to form a new interdisciplinary team, including the UK's leading experts in REE geology and metallurgy, together with materials science, high/low temperature fluid geochemistry, computational simulation/mineral physics, geomicrobiology and bioprocessing. The team brings substantial background IP and the key skills required. The research responds to the needs of industry partners and involves substantive international collaboration as well as a wider international and UK network across the REE value chain. The work programme has two strands. The first centres on conventional deposits, which comprise all of the REE mines outside China and the majority of active exploration and development projects. The aim is to make a step change in the understanding of the mobility of REE in these natural deposits via mineralogical analysis, experiments and computational simulation. Then, based on this research, the aim is to optimise the most relevant extraction methods. The second strand looks to the future to develop a sustainable new method of REE extraction. The focus will be the ion adsorption deposits, which could be exploited with the lowest environmental impact of any of the main ore types using a well-controlled in-situ leaching operation. Impact will be immediate through our industry partners engaged in REE exploration and development projects, who will gain improved deposit models and better and more efficient, and therefore more environmentally friendly, extraction techniques. There will be wider benefits for researchers in other international teams and companies as we publish our results. Security of REE supply is a major international issue and the challenges tackled in this research will be relevant to practically all REE deposits. Despite the UK not having world class REE deposits itself, the economy is reliant on REE (e.g. the functional materials and devices industry is worth ~£3 Bn p.a.) and therefore the UK must lead research into the extraction process. Manufacturers who use REE will also benefit from the research by receiving up to date information on prospects for future Nd and HREE supply. This will help plan their longer term product development, as well as shorter term purchasing strategy. Likewise, the results will be useful to inform national and European level policy and to interest, entertain and educate the wider community about the natural characters and importance of the REE.

  • Funder: UKRI Project Code: BB/M026671/1
    Funder Contribution: 241,275 GBP
    Partners: AquaGen, DFO, NINA, MSS, UCC, AgriFood and Biosciences Institute, UHI, Institute of Marine Research (IMR)

    Controversy surrounds the actual impacts of Atlantic salmon farming on wild salmonid stocks, fed by the lack of direct evidence for or against many potential impacts, with uncertainty an increasing impediment to sustainable industry development and effective management of wild stocks. This applies to the potential impact of the introgression of farm genomes into locally adapted wild populations from breeding of farm escapes. Escapes do occur and are recognized as inevitable, but are a very small fraction of farm stocks and vary in numbers both locally and temporally. The majority of escapees are expected to die without breeding but some do remain in or ascend rivers and spawn. However, a detailed understanding of actual levels of interbreeding and introgression in most rivers is lacking which, along with an understanding of the adaptive differentiation of farm and wild salmon, is required to establish the actual impact of this potential interaction on the productivity and viability of wild populations. Detection and quantification of interbreeding and introgression requires diagnostic markers for farm and wild genomes. Genetic differentiation of farm and wild genomes can evolve through founder effects, selective breeding and domestication selection and is observed in respect of a variety of molecular markers. However, existing molecular markers are not fully diagnostic and regionally constrained in their usefulness. Unfortunately, marker panels screened for useful variation have been small and arbitrary such that they are unlikely to include the most informative loci and to be context specific, limiting their power and transferability. To properly address the issue of introgression molecular markers are required that are highly diagnostic across all farm and wild populations. These markers will be in genomic regions involved in domestication and controlling the expression of selected economic traits. What is known of the genomic architecture of domestication and most economic traits indicates their control is polygenic, making the targeting of specific gene regions in the search for markers difficult. In contrast, recent advances in genomics make possible genome scanning and genome-wide association studies (GWAS) which can provide a high resolution assessment of molecular differentiation between different individuals or populations across the genome. Different GWAS strategies can be employed but two are deemed optimal in the current context. Firstly, a GWAS will be carried out using a new Atlantic salmon SNP (single nucleotide polymorphism) containing 930k nuclear SNPs, recently developed in collaboration with the salmon farming industry. This will be carried out on a broad base of representative farm and wild stocks. Secondly, GWAS will be carried out to identify temporally stable epigenetic DNA-methylation base changes induced by rearing fish in culture by comparing groups of single source wild fish reared in the wild and in culture. The study will deliver the first general understanding of domestication related molecular genetic differentiation between farmed and wild salmon and identify the best markers for identifying farm salmon in the wild and assessing genetic introgression of farm genes into wild populations. The work will deliver a more robust and generally applicable tool for determining the actual levels of escapes and introgression in wild salmon populations. Following field calibration and independent validation, the diagnostic methodology defined in the study is expected to provide the basis for generating the evidence needed to clarify the debate on levels of escapes and introgression and the long term impacts of introgression on population viability. This will help to define more clearly the path forward for the sustainable development of the salmon farming industry in the UK and elsewhere in the North Atlantic region and help to inform management priorities for wild Atlantic salmon stocks.

  • Funder: UKRI Project Code: BB/N00390X/1
    Funder Contribution: 5,400 GBP
    Partners: UQ, NOVARTIS, University of Warwick, Merck & Co Inc, McMaster University

    USA

  • Funder: UKRI Project Code: EP/M006255/1
    Funder Contribution: 950,403 GBP
    Partners: NIHR CRN: North West Coast, Lancashire Care NHS Foundation Trust, Lancaster University, SR Research Ltd

    There is mounting evidence that deficits in saccadic and smooth pursuit eye movements are characteristic of dementia. These deficits can be detected in a lab or clinical setting using specialised eye-tracking equipment but this is inconvenient for the patient, costly for the NHS and introduces the risk of sampling bias because clinic visits are inevitably intermittent. The aim of the Monitoring Of Dementia using Eye Movements (MODEM) project is to enable the longitudinal collection of data at low cost and with minimal inconvenience, to provide a novel platform for prognosis and diagnosis of dementia. We propose to tackle monitoring of disease progression with in-home eye tracking and computational analysis of eye movement embedded with patients' everyday activity. This is an entirely novel approach, and hence high risk. However, it has the potential to lead to major breakthroughs, for three reasons: (i) Eye movement and cognitive health are closely linked, including initial evidence of markers for dementia diagnosis. (ii) Eye trackers are on the verge of a step change from lab instrument to widely deployed sensor, and their adoption for contact-less health monitoring is becoming a realistic proposition. (iii) People/patients use their eyes in daily routines that are visually engaging, and that present rich contexts for collection of information about how their eye movement changes over time, as a function of disease progression. Our vision is that rather than patients having to attend a clinic or laboratory, eye movement data can be collected in settings where the technology is ambient and peoples' behaviour is relaxed and natural. The target settings are peoples' own homes and care homes. Eye trackers can be placed strategically to observe eye movement in the context of everyday tasks. For example they can be used to track hand-eye coordination in routine tasks such as tea-making for possible signs of change; these might signal cognitive decline long before routines become more obviously affected. Eye trackers can also be deployed interactively. People spend significant amounts of their daily lives as consumers of visual media, especially through TV, which affords interactive stimulation of eye movement. For example, content (e.g. TV programmes) can be designed to elicit behaviours of interest for diagnosis. People can also be provided with active gaze controls for interaction, for instance as alternative to remote control functions of a TV. Use of gaze for control stimulates specific eye movements which can be used for testing. Though beyond the scope project, this could also lead to therapeutic application of the technology. Moreover, as eye trackers are based on cameras and computer vision, this opens up avenues for integration with other vision-based approaches such as analysis of facial expressions, for multimodal cognitive health analysis.

  • Funder: UKRI Project Code: EP/M019918/1
    Funder Contribution: 4,991,610 GBP
    Partners: NAVTECH RADAR LIMITED, University of Oxford, BP Global, Amey Plc, Gompels HealthCare Ltd, ARC Centre of Excellence for Robotic Vis, GCS, University of Pennsylvania, Eidgenossiche Technical College, Automotive Council UK...

    VISION: To create, run and exploit the world's leading research programme in mobile autonomy addressing fundamental technical issues which impede large scale commercial and societal adoption of mobile robotics. AMBITION: We need to build better robots - we need them to be cheap, work synergistically with people in large, complex and time-changing environments and do so for long periods of time. Moreover, it is essential that they are safe and trusted. We are compelled as researchers to produce the foundational technologies that will see robots work in economically and socially important domains. These motivations drive the science in this proposal. STRATEGY: Robotics is fast advancing to a point where autonomous systems can add real value to the public domain. The potential reach of mobile robotics in particular is vast, covering sectors as diverse as transport, logistics, space, defence, agriculture and infrastructure management. In order to realise this potential we need our robots to be cheap, work synergistically with people in large, complex and time-changing environments and do so robustly for long periods of time. Our aim, therefore, is to create a lasting, catalysing impact on UKPLC by growing a sustainable centre of excellence in mobile autonomy. A central tenet to this research is that the capability gap between the state of the art and what is needed is addressed by designing algorithms that leverage experiences gained through real and continued world use. Our machines will operate in support of humans and seamlessly integrate into complex cyber-physical systems with a variety of physical and computational elements. We must, therefore, be able to guarantee, and even certify, that the software that controls the robots is safe and trustworthy by design. We will engage in this via a range of flagship technology demonstrators in different domains (transport, logistics, space, etc.), which will mesh the research together, giving at once context, grounding, validation and impact.

Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
15 Projects, page 2 of 2
  • Funder: UKRI Project Code: NE/M011429/1
    Funder Contribution: 549,872 GBP
    Partners: Greenland Rare Earth Projects Ltd, SRK Consulting UK Ltd, HGF, Tanbreez Mining Greenland A/S, Oakdene Hollins (United Kingdom), Umwelt und Ingenieurtechnik GmbH, Mkango Resources Limited, FAPESP, UCT, Maakrish Ltd...

    Rare earth elements (REE) are the headline of the critical metals security of supply agenda. All the REE were defined as critical by the European Union in 2010, and in subsequent analysis in 2014. Similar projects in the UK and USA have highlighted 'heavy' REE (HREE - europium through to lutetium) as the metals most likely to be at risk of supply disruption and in short supply in the near future. The REE are ubiquitous within modern technologies, including computers and low energy lighting, energy storage devices, large wind turbines and smart materials, making their supply vital to UK society. The challenge is to develop new environmentally friendly and economically viable, neodymium (Nd) and HREE deposits so that use of REE in new and green technologies can continue to expand. The principal aims of this project are to understand the mobility and concentration of Nd and HREE in natural systems and to investigate new processes that will lower the environmental impact of REE extraction and recovery. By concentrating on the critical REE, the research will be wide ranging in the deposits and processing techniques considered. It gives NERC and the UK a world-leading research consortium on critical REE, concentrating on deposit types identified in the catalyst phase as most likely to have low environmental impact, and on research that bridges the two goals of the SoS programme. The project brings together two groups from the preceding catalyst projects (GEM-CRE, MM-FREE) to form a new interdisciplinary team, including the UK's leading experts in REE geology and metallurgy, together with materials science, high/low temperature fluid geochemistry, computational simulation/mineral physics, geomicrobiology and bioprocessing. The team brings substantial background IP and the key skills required. The research responds to the needs of industry partners and involves substantive international collaboration as well as a wider international and UK network across the REE value chain. The work programme has two strands. The first centres on conventional deposits, which comprise all of the REE mines outside China and the majority of active exploration and development projects. The aim is to make a step change in the understanding of the mobility of REE in these natural deposits via mineralogical analysis, experiments and computational simulation. Then, based on this research, the aim is to optimise the most relevant extraction methods. The second strand looks to the future to develop a sustainable new method of REE extraction. The focus will be the ion adsorption deposits, which could be exploited with the lowest environmental impact of any of the main ore types using a well-controlled in-situ leaching operation. Impact will be immediate through our industry partners engaged in REE exploration and development projects, who will gain improved deposit models and better and more efficient, and therefore more environmentally friendly, extraction techniques. There will be wider benefits for researchers in other international teams and companies as we publish our results. Security of REE supply is a major international issue and the challenges tackled in this research will be relevant to practically all REE deposits. Despite the UK not having world class REE deposits itself, the economy is reliant on REE (e.g. the functional materials and devices industry is worth ~£3 Bn p.a.) and therefore the UK must lead research into the extraction process. Manufacturers who use REE will also benefit from the research by receiving up to date information on prospects for future Nd and HREE supply. This will help plan their longer term product development, as well as shorter term purchasing strategy. Likewise, the results will be useful to inform national and European level policy and to interest, entertain and educate the wider community about the natural characters and importance of the REE.

  • Funder: UKRI Project Code: BB/M026671/1
    Funder Contribution: 241,275 GBP
    Partners: AquaGen, DFO, NINA, MSS, UCC, AgriFood and Biosciences Institute, UHI, Institute of Marine Research (IMR)

    Controversy surrounds the actual impacts of Atlantic salmon farming on wild salmonid stocks, fed by the lack of direct evidence for or against many potential impacts, with uncertainty an increasing impediment to sustainable industry development and effective management of wild stocks. This applies to the potential impact of the introgression of farm genomes into locally adapted wild populations from breeding of farm escapes. Escapes do occur and are recognized as inevitable, but are a very small fraction of farm stocks and vary in numbers both locally and temporally. The majority of escapees are expected to die without breeding but some do remain in or ascend rivers and spawn. However, a detailed understanding of actual levels of interbreeding and introgression in most rivers is lacking which, along with an understanding of the adaptive differentiation of farm and wild salmon, is required to establish the actual impact of this potential interaction on the productivity and viability of wild populations. Detection and quantification of interbreeding and introgression requires diagnostic markers for farm and wild genomes. Genetic differentiation of farm and wild genomes can evolve through founder effects, selective breeding and domestication selection and is observed in respect of a variety of molecular markers. However, existing molecular markers are not fully diagnostic and regionally constrained in their usefulness. Unfortunately, marker panels screened for useful variation have been small and arbitrary such that they are unlikely to include the most informative loci and to be context specific, limiting their power and transferability. To properly address the issue of introgression molecular markers are required that are highly diagnostic across all farm and wild populations. These markers will be in genomic regions involved in domestication and controlling the expression of selected economic traits. What is known of the genomic architecture of domestication and most economic traits indicates their control is polygenic, making the targeting of specific gene regions in the search for markers difficult. In contrast, recent advances in genomics make possible genome scanning and genome-wide association studies (GWAS) which can provide a high resolution assessment of molecular differentiation between different individuals or populations across the genome. Different GWAS strategies can be employed but two are deemed optimal in the current context. Firstly, a GWAS will be carried out using a new Atlantic salmon SNP (single nucleotide polymorphism) containing 930k nuclear SNPs, recently developed in collaboration with the salmon farming industry. This will be carried out on a broad base of representative farm and wild stocks. Secondly, GWAS will be carried out to identify temporally stable epigenetic DNA-methylation base changes induced by rearing fish in culture by comparing groups of single source wild fish reared in the wild and in culture. The study will deliver the first general understanding of domestication related molecular genetic differentiation between farmed and wild salmon and identify the best markers for identifying farm salmon in the wild and assessing genetic introgression of farm genes into wild populations. The work will deliver a more robust and generally applicable tool for determining the actual levels of escapes and introgression in wild salmon populations. Following field calibration and independent validation, the diagnostic methodology defined in the study is expected to provide the basis for generating the evidence needed to clarify the debate on levels of escapes and introgression and the long term impacts of introgression on population viability. This will help to define more clearly the path forward for the sustainable development of the salmon farming industry in the UK and elsewhere in the North Atlantic region and help to inform management priorities for wild Atlantic salmon stocks.

  • Funder: UKRI Project Code: BB/N00390X/1
    Funder Contribution: 5,400 GBP
    Partners: UQ, NOVARTIS, University of Warwick, Merck & Co Inc, McMaster University

    USA

  • Funder: UKRI Project Code: EP/M006255/1
    Funder Contribution: 950,403 GBP
    Partners: NIHR CRN: North West Coast, Lancashire Care NHS Foundation Trust, Lancaster University, SR Research Ltd

    There is mounting evidence that deficits in saccadic and smooth pursuit eye movements are characteristic of dementia. These deficits can be detected in a lab or clinical setting using specialised eye-tracking equipment but this is inconvenient for the patient, costly for the NHS and introduces the risk of sampling bias because clinic visits are inevitably intermittent. The aim of the Monitoring Of Dementia using Eye Movements (MODEM) project is to enable the longitudinal collection of data at low cost and with minimal inconvenience, to provide a novel platform for prognosis and diagnosis of dementia. We propose to tackle monitoring of disease progression with in-home eye tracking and computational analysis of eye movement embedded with patients' everyday activity. This is an entirely novel approach, and hence high risk. However, it has the potential to lead to major breakthroughs, for three reasons: (i) Eye movement and cognitive health are closely linked, including initial evidence of markers for dementia diagnosis. (ii) Eye trackers are on the verge of a step change from lab instrument to widely deployed sensor, and their adoption for contact-less health monitoring is becoming a realistic proposition. (iii) People/patients use their eyes in daily routines that are visually engaging, and that present rich contexts for collection of information about how their eye movement changes over time, as a function of disease progression. Our vision is that rather than patients having to attend a clinic or laboratory, eye movement data can be collected in settings where the technology is ambient and peoples' behaviour is relaxed and natural. The target settings are peoples' own homes and care homes. Eye trackers can be placed strategically to observe eye movement in the context of everyday tasks. For example they can be used to track hand-eye coordination in routine tasks such as tea-making for possible signs of change; these might signal cognitive decline long before routines become more obviously affected. Eye trackers can also be deployed interactively. People spend significant amounts of their daily lives as consumers of visual media, especially through TV, which affords interactive stimulation of eye movement. For example, content (e.g. TV programmes) can be designed to elicit behaviours of interest for diagnosis. People can also be provided with active gaze controls for interaction, for instance as alternative to remote control functions of a TV. Use of gaze for control stimulates specific eye movements which can be used for testing. Though beyond the scope project, this could also lead to therapeutic application of the technology. Moreover, as eye trackers are based on cameras and computer vision, this opens up avenues for integration with other vision-based approaches such as analysis of facial expressions, for multimodal cognitive health analysis.

  • Funder: UKRI Project Code: EP/M019918/1
    Funder Contribution: 4,991,610 GBP
    Partners: NAVTECH RADAR LIMITED, University of Oxford, BP Global, Amey Plc, Gompels HealthCare Ltd, ARC Centre of Excellence for Robotic Vis, GCS, University of Pennsylvania, Eidgenossiche Technical College, Automotive Council UK...

    VISION: To create, run and exploit the world's leading research programme in mobile autonomy addressing fundamental technical issues which impede large scale commercial and societal adoption of mobile robotics. AMBITION: We need to build better robots - we need them to be cheap, work synergistically with people in large, complex and time-changing environments and do so for long periods of time. Moreover, it is essential that they are safe and trusted. We are compelled as researchers to produce the foundational technologies that will see robots work in economically and socially important domains. These motivations drive the science in this proposal. STRATEGY: Robotics is fast advancing to a point where autonomous systems can add real value to the public domain. The potential reach of mobile robotics in particular is vast, covering sectors as diverse as transport, logistics, space, defence, agriculture and infrastructure management. In order to realise this potential we need our robots to be cheap, work synergistically with people in large, complex and time-changing environments and do so robustly for long periods of time. Our aim, therefore, is to create a lasting, catalysing impact on UKPLC by growing a sustainable centre of excellence in mobile autonomy. A central tenet to this research is that the capability gap between the state of the art and what is needed is addressed by designing algorithms that leverage experiences gained through real and continued world use. Our machines will operate in support of humans and seamlessly integrate into complex cyber-physical systems with a variety of physical and computational elements. We must, therefore, be able to guarantee, and even certify, that the software that controls the robots is safe and trustworthy by design. We will engage in this via a range of flagship technology demonstrators in different domains (transport, logistics, space, etc.), which will mesh the research together, giving at once context, grounding, validation and impact.