Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
146 Projects

  • Canada
  • 2018-2022
  • 2022

10
arrow_drop_down
  • Funder: UKRI Project Code: EP/V043811/1
    Funder Contribution: 497,214 GBP

    Coronaviruses are transmitted from an infectious individual through large respiratory droplets generated by coughing, sneezing or speaking. These infectious droplets are then transmitted to the mucosal surfaces of a recipient through inhalation of the aerosol or by contact with contaminated fomites such as surfaces or other objects. In healthcare settings, personal protective equipment (PPE) plays a crucial role in interrupting the transmission of highly communicable diseases such as COVID19 from patients to healthcare workers (HCWs). However, research has shown that PPE can also act as a fomite during the donning and doffing process as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can survive on these surfaces for up to three days. This creates a need for more effective PPE materials that can provide antiviral protection. In this proposal we aim to develop a dual action antiviral/antifouling coating to lower the risk of transmission of the SARS-CoV-2 to HCWs from COVID19 patients. This project will deliver antiviral/antifouling coatings that can be readily applied to PPE surfaces such as faceshields that are likely to encounter a high level of viral load and would be of great benefit to the health of clinical staff. Furthermore, this project has embedded into its planning a rapid pathway for optimisation, translation, and upscaling of manufacture to deliver a low-cost technology within a short timescale.

    visibility32
    visibilityviews32
    downloaddownloads20
    Powered by Usage counts
    more_vert
  • Funder: EC Project Code: 723770
    Overall Budget: 15,270,000 EURFunder Contribution: 5,039,100 EUR

    Nanomedicine is the application of nanotechnology to medicine and healthcare. The field takes advantage of the physical, chemical and biological properties of materials at the nanometer scale to be used for a better understanding of the biological mechanisms of diseases at the molecular level, leading to new targets for earlier and more precise diagnostics and therapeutics. Nanomedicine, rated among the six most promising Key Enabling Technologies, is one of the most important emerging areas of health research expected to contribute to one of the strategic challenges that Europe has to face in the future: Provide effective and affordable health care and assure the wellbeing of an increasingly aged population. EuroNanoMed III (ENM III) builds on the foundations of ENM I & II, which launched 7 successful joint calls for proposals since 2009, funded 51 transnational research projects involving 269 partners from 25 countries/regions, and allocated € 45,5 million to research projects from ENM funding agencies. ENM III consortium, reinforced with 12 new partners from Europe, Canada and Taiwan, is committed to fostering the competiveness of European nanomedicine actors taking into account recent changes in the landscape and new stakeholders and challenges, as identified in the SRIA in nanomedicine. The first joint call for proposals will be co-funded by ENM III partners and the EC. After the co-funded call, three additional joint transnational calls will be organized and strategic activities will be accomplished in collaboration with key initiatives in the field. ENM III actions focus on translatability of project results to clinical and industry needs.

    visibility182
    visibilityviews182
    downloaddownloads133
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/V019856/1
    Funder Contribution: 12,298 GBP

    The human mouth contains many different types of microorganisms that are often found attached to oral surfaces in 'sticky' communities called biofilms. These microorganisms are held in close proximity and will therefore likely influence the behaviour of each other. The effects of this could result in increased microbial growth, the displacement of some microorganisms to other sites, the alteration of gene expression and potentially, the enabling of microorganisms to cause infection. A PhD research project being done by Ms Megan Williams at the School of Dentistry, Cardiff University has been exploring how a fungus called Candida albicans can interact both with acrylic surfaces (used to manufacture dentures) and also with bacterial species often found alongside Candida albicans. To date, the work has indicated that colonisation of acrylic coated with different fluids, including those generated from tobacco smoking, may change the way Candida albicans grows. Candida albicans can grow as round cells called yeast, or as filamentous forms called hyphae. It is the hyphal forms that are often considered more damaging to human tissue surfaces during infection. In addition, the research shows that when certain bacteria are grown on acrylic surfaces with Candida albicans, hyphal development is also triggered. This is important, as it may mean that occurrence of infection by Candida albicans is at least in part determined by the community composition of the bacteria present alongside Candida. To date, the methods used to study these effects have included fluorescent microscopy, where the Candida is stained to fluoresce a different colour to bacteria and the surface of attachment. Whilst this approach allows quantification of attachment and imaging of the different growth forms, it cannot determine strength of cell-cell-surface interactions. Atomic Force Microscopy (AFM) is a method that provides images through measuring forces acting between a moving probe and a surface. It is possible to attach different molecules and even whole bacteria to the AFM probe, and in doing so, we can measure interactions occurring between bacteria, and either Candida yeast or hyphae serving as the substrate. Dr Laurent Bozec and his team at the University of Toronto are experts in use of AFM, which is not available in the School of dentistry, Cardiff. The exchange therefore offers the PhD student the opportunity to learn a new experimental technique, generate important data for the PhD and benefit from unique networking experiences. The results generated from this proposal will greatly enhance the research output and complement existing findings of the PhD. Ultimately, this could help determine how bacteria physically interact with Candida albicans and trigger the development of hyphal filaments to facilitate infection.

    more_vert
  • Funder: UKRI Project Code: NE/V010131/1
    Funder Contribution: 7,776 GBP

    NERC: Jennifer Watts: NE/S007504/1

    more_vert
  • Funder: UKRI Project Code: NE/V020471/1
    Funder Contribution: 12,390 GBP

    ESRC : Emily MacLeod : ES/P000592/1. This exchange provides me with the opportunity to develop my existing expertise within science identities research, and make links within the field of teacher education and teaching identities research. There is a critical shortage of teachers globally; an ongoing issue which has far-reaching and negative consequences for schools and their students. The teacher shortage in the UK, where I am conducting my PhD and where I myself was a teacher, is particularly acute. Government teacher recruitment targets in England have been missed for the last seven years. However, this shortage is not evenly spread, and raises significant social justice concerns. For example, it has been estimated that schools in England would need an additional 68,000 Black and minority ethnic teachers for the workforce to reflect the population it teaches. Science especially faces some of the worst teacher shortages. But incentives to attract more people into science teaching have so far failed to make a significant impact on this shortage, and have tended to be financial; based upon the assumption that science graduates can earn considerably more outside of the relatively low-paid role of teaching. Unlike the well-documented shortage of teachers in England, there is currently very little research into the scale of the teacher shortage in Canada, partly due to differences in governance and contexts across the different provinces. However, in contrast to the surplus of teachers seen in recent years, there are now signs of an increasing shortage of teachers. This summer in Québec, where I intend to complete this exchange, the government reported that there were over 250 empty teacher vacancies in the province, and there are concerns that Covid-19 is likely to make things worse. As in England, there is also a severe and growing underrepresentation of people of colour in Canada's teaching workforce. This is particularly worrying within the context of an increasingly diverse Canadian population. Also as in England, this shortage is not spread evenly. Science teachers are some of the most needed. However, unlike in England, teacher salaries across Canada are amongst the highest of the OECD community, and subject-specific incentives have yet to be used. The shortage of science teachers especially, seen in both England and Canada, is of particular concern given that there is a globally-recognised STEM (Science, Technology, Engineering and Mathematics) skills shortage, likely to increase due to Covid-19. This growing demand for more young people studying and working in STEM will not be met without enough qualified science teachers. Yet in order to improve this situation, we need to better understand science teacher supply patterns. To date, research into teacher supply in science (and other disciplines) has been conducted by specialists in teacher education. From this we know that science teachers report becoming teachers not because they always wanted to, but after having had positive teaching-like experiences. We also know from existing science identities research from both the host and home supervisors that social and cultural influences work to influence whether and how people see different sciences roles as 'for me' or not. This exchange will help me to develop my research and communication skills whilst conducting comparative research to develop understandings of who does, and importantly who does not, want to become a science teacher in the UK and Canada, and why. I will build upon my existing expertise in science identity development amongst young people, and learn from the expertise of Dr Gonsalves and her colleagues in science teacher identities, and how teaching-like experiences can affect these identities. Combining these fields will help me to contribute to understandings of how people's identities shape how they feel about becoming science teachers.

    more_vert
  • Funder: UKRI Project Code: EP/V000683/1
    Funder Contribution: 42,298 GBP

    A central goal of this Overseas Travel Grant proposal is the establishment of a network of leading researchers with expertise in bone and tooth formation who share the believe that a comprehensive understanding of the nanoscale organization of both mineral and organic phase is at the heart of the development of new approaches for medical treatments. The proposed methodology is making use of the advancement of high-resolution electron imaging and spectroscopy to gain insights into the 3D structure and composition on the nanoscale. This approach is of great importance for a full understanding of the mechanisms behind structure formation and potential failure mechanisms in bones and teeth. In a recent publication (Reznikov et al., Science 2018) we were able to identify 12 levels of organisation in bone from the nano- to the macroscopic scale with a self-similar organisation pattern emerging across the different length-scales. These findings indicate the importance to understand the structure of mineralised tissue on the nanoscale. Based on this work I aim to explore the application of nanoscale imaging using advanced electron microscopy and spectroscopy to mineralised tissue such as bone cells and teeth. In both cases it is highly exciting to gain a full image of the mineral/organic assembly in healthy and disease affected tissues. The complex interplay between the mineral and the organic phases in bones and teeth appears to strongly affect the properties of the resulting biomineral with significant effects of disruptions on the nanoscale due to mineralisation affecting diseases (e.g. osteogenesis imperfecta or amelogenesis imperfecta, osteoporosis, arthritis). Hence, this work will provide a platform for future collaboration with leading life scientists and clinicians and will enable to link the high-resolution information gained by the chosen approaches with diagnostic observations. Both hosts at McGill University in Montreal and University of Connecticut in Hartford provide ideal conditions for both training and research since they have an excellent international reputation on health related materials research and provide access to an outstanding set of experimental techniques to achieve the goals of this proposal.

    more_vert
  • Funder: EC Project Code: 696295
    Overall Budget: 14,403,800 EURFunder Contribution: 4,753,240 EUR

    ERA-HDHL is a proposal of ERA-NET Cofund in the field of nutrition and health to support the Joint Programme Initiative Healthy Diet for a Healthy Life (JPI HDHL). Nowadays, there is a high burden of non-communicable diseases due to unhealthy diet and lifestyle patterns. The 24 members of the JPI HDHL are working together to develop means to (1) motivate people to adopt healthier lifestyles including dietary choices and physical activity, (2) develop and produce healthy, high-quality, safe and sustainable foods and (3) prevent diet-related diseases. Between 2012 and 2015, JPI HDHL had implemented 7 JFAs with 40 M€ funds from national funding. The JPI HDHL is now set for further enhancement in tight coordination with the EC through the ERA-NET Cofund instrument. ERA-HDHL will provide a robust platform for implementing joint funding actions (JFAs) that address the needs identified in the JPI HDHL strategic research agenda and strengthen the research funding activities of JPI HDHL. An EC cofunded call on the identification and validation of biomarkers in nutrition and health will be implemented. For this foreseen action, the member countries of the JPI HDHL have doubled their financial commitment comparing to previous JFA implemented on a similar topic. Moreover, ERA-HDHL will launch at least 3 additional JFAs in line to fulfil the JPI HDHL objectives.

    visibility3K
    visibilityviews2,668
    downloaddownloads5,614
    Powered by Usage counts
    more_vert
  • Funder: NSF Project Code: 1907243
    Funder Contribution: 138,000 USD
    more_vert
  • Funder: NSF Project Code: 1803086
    more_vert
  • Funder: UKRI Project Code: EP/S016570/1
    Funder Contribution: 6,604,390 GBP

    Given the unprecedented demand for mobile capacity beyond that available from the RF spectrum, it is natural to consider the infrared and visible light spectrum for future terrestrial wireless systems. Wireless systems using these parts of the electromagnetic spectrum could be classified as nmWave wireless communications system in relation to mmWave radio systems and both are being standardised in current 5G systems. TOWS, therefore, will provide a technically logical pathway to ensure that wireless systems are future-proof and that they can deliver the capacities that future data intensive services such as high definition (HD) video streaming, augmented reality, virtual reality and mixed reality will demand. Light based wireless communication systems will not be in competition with RF communications, but instead these systems follow a trend that has been witnessed in cellular communications over the last 30 years. Light based wireless communications simply adds new capacity - the available spectrum is 2600 times the RF spectrum. 6G and beyond promise increased wireless capacity to accommodate this growth in traffic in an increasingly congested spectrum, however action is required now to ensure UK leadership of the fast moving 6G field. Optical wireless (OW) opens new spectral bands with a bandwidth exceeding 540 THz using simple sources and detectors and can be simpler than cellular and WiFi with a significantly larger spectrum. It is the best choice of spectrum beyond millimetre waves, where unlike the THz spectrum (the other possible choice), OW avoids complex sources and detectors and has good indoor channel conditions. Optical signals, when used indoors, are confined to the environment in which they originate, which offers added security at the physical layer and the ability to re-use wavelengths in adjacent rooms, thus radically increasing capacity. Our vision is to develop and experimentally demonstrate multiuser Terabit/s optical wireless systems that offer capacities at least two orders of magnitude higher than the current planned 5G optical and radio wireless systems, with a roadmap to wireless systems that can offer up to four orders of magnitude higher capacity. There are four features of the proposed system which make possible such unprecedented capacities to enable this disruptive advance. Firstly, unlike visible light communications (VLC), we will exploit the infrared spectrum, this providing a solution to the light dimming problem associated with VLC, eliminating uplink VLC glare and thus supporting bidirectional communications. Secondly, to make possible much greater transmission capacities and multi-user, multi-cell operation, we will introduce a new type of LED-like steerable laser diode array, which does not suffer from the speckle impairments of conventional laser diodes while ensuring ultrahigh speed performance. Thirdly, with the added capacity, we will develop native OW multi-user systems to share the resources, these being adaptively directional to allow full coverage with reduced user and inter-cell interference and finally incorporate RF systems to allow seamless transition and facilitate overall network control, in essence to introduce software defined radio to optical wireless. This means that OW multi-user systems can readily be designed to allow very high aggregate capacities as beams can be controlled in a compact manner. We will develop advanced inter-cell coding and handover for our optical multi-user systems, this also allowing seamless handover with radio systems when required such as for resilience. We believe that this work, though challenging, is feasible as it will leverage existing skills and research within the consortium, which includes excellence in OW link design, advanced coding and modulation, optimised algorithms for front-haul and back-haul networking, expertise in surface emitting laser design and single photon avalanche detectors for ultra-sensitive detection.

    visibility78
    visibilityviews78
    downloaddownloads327
    Powered by Usage counts
    more_vert
Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
146 Projects
  • Funder: UKRI Project Code: EP/V043811/1
    Funder Contribution: 497,214 GBP

    Coronaviruses are transmitted from an infectious individual through large respiratory droplets generated by coughing, sneezing or speaking. These infectious droplets are then transmitted to the mucosal surfaces of a recipient through inhalation of the aerosol or by contact with contaminated fomites such as surfaces or other objects. In healthcare settings, personal protective equipment (PPE) plays a crucial role in interrupting the transmission of highly communicable diseases such as COVID19 from patients to healthcare workers (HCWs). However, research has shown that PPE can also act as a fomite during the donning and doffing process as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can survive on these surfaces for up to three days. This creates a need for more effective PPE materials that can provide antiviral protection. In this proposal we aim to develop a dual action antiviral/antifouling coating to lower the risk of transmission of the SARS-CoV-2 to HCWs from COVID19 patients. This project will deliver antiviral/antifouling coatings that can be readily applied to PPE surfaces such as faceshields that are likely to encounter a high level of viral load and would be of great benefit to the health of clinical staff. Furthermore, this project has embedded into its planning a rapid pathway for optimisation, translation, and upscaling of manufacture to deliver a low-cost technology within a short timescale.

    visibility32
    visibilityviews32
    downloaddownloads20
    Powered by Usage counts
    more_vert
  • Funder: EC Project Code: 723770
    Overall Budget: 15,270,000 EURFunder Contribution: 5,039,100 EUR

    Nanomedicine is the application of nanotechnology to medicine and healthcare. The field takes advantage of the physical, chemical and biological properties of materials at the nanometer scale to be used for a better understanding of the biological mechanisms of diseases at the molecular level, leading to new targets for earlier and more precise diagnostics and therapeutics. Nanomedicine, rated among the six most promising Key Enabling Technologies, is one of the most important emerging areas of health research expected to contribute to one of the strategic challenges that Europe has to face in the future: Provide effective and affordable health care and assure the wellbeing of an increasingly aged population. EuroNanoMed III (ENM III) builds on the foundations of ENM I & II, which launched 7 successful joint calls for proposals since 2009, funded 51 transnational research projects involving 269 partners from 25 countries/regions, and allocated € 45,5 million to research projects from ENM funding agencies. ENM III consortium, reinforced with 12 new partners from Europe, Canada and Taiwan, is committed to fostering the competiveness of European nanomedicine actors taking into account recent changes in the landscape and new stakeholders and challenges, as identified in the SRIA in nanomedicine. The first joint call for proposals will be co-funded by ENM III partners and the EC. After the co-funded call, three additional joint transnational calls will be organized and strategic activities will be accomplished in collaboration with key initiatives in the field. ENM III actions focus on translatability of project results to clinical and industry needs.

    visibility182
    visibilityviews182
    downloaddownloads133
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: NE/V019856/1
    Funder Contribution: 12,298 GBP

    The human mouth contains many different types of microorganisms that are often found attached to oral surfaces in 'sticky' communities called biofilms. These microorganisms are held in close proximity and will therefore likely influence the behaviour of each other. The effects of this could result in increased microbial growth, the displacement of some microorganisms to other sites, the alteration of gene expression and potentially, the enabling of microorganisms to cause infection. A PhD research project being done by Ms Megan Williams at the School of Dentistry, Cardiff University has been exploring how a fungus called Candida albicans can interact both with acrylic surfaces (used to manufacture dentures) and also with bacterial species often found alongside Candida albicans. To date, the work has indicated that colonisation of acrylic coated with different fluids, including those generated from tobacco smoking, may change the way Candida albicans grows. Candida albicans can grow as round cells called yeast, or as filamentous forms called hyphae. It is the hyphal forms that are often considered more damaging to human tissue surfaces during infection. In addition, the research shows that when certain bacteria are grown on acrylic surfaces with Candida albicans, hyphal development is also triggered. This is important, as it may mean that occurrence of infection by Candida albicans is at least in part determined by the community composition of the bacteria present alongside Candida. To date, the methods used to study these effects have included fluorescent microscopy, where the Candida is stained to fluoresce a different colour to bacteria and the surface of attachment. Whilst this approach allows quantification of attachment and imaging of the different growth forms, it cannot determine strength of cell-cell-surface interactions. Atomic Force Microscopy (AFM) is a method that provides images through measuring forces acting between a moving probe and a surface. It is possible to attach different molecules and even whole bacteria to the AFM probe, and in doing so, we can measure interactions occurring between bacteria, and either Candida yeast or hyphae serving as the substrate. Dr Laurent Bozec and his team at the University of Toronto are experts in use of AFM, which is not available in the School of dentistry, Cardiff. The exchange therefore offers the PhD student the opportunity to learn a new experimental technique, generate important data for the PhD and benefit from unique networking experiences. The results generated from this proposal will greatly enhance the research output and complement existing findings of the PhD. Ultimately, this could help determine how bacteria physically interact with Candida albicans and trigger the development of hyphal filaments to facilitate infection.

    more_vert
  • Funder: UKRI Project Code: NE/V010131/1
    Funder Contribution: 7,776 GBP

    NERC: Jennifer Watts: NE/S007504/1

    more_vert
  • Funder: UKRI Project Code: NE/V020471/1
    Funder Contribution: 12,390 GBP

    ESRC : Emily MacLeod : ES/P000592/1. This exchange provides me with the opportunity to develop my existing expertise within science identities research, and make links within the field of teacher education and teaching identities research. There is a critical shortage of teachers globally; an ongoing issue which has far-reaching and negative consequences for schools and their students. The teacher shortage in the UK, where I am conducting my PhD and where I myself was a teacher, is particularly acute. Government teacher recruitment targets in England have been missed for the last seven years. However, this shortage is not evenly spread, and raises significant social justice concerns. For example, it has been estimated that schools in England would need an additional 68,000 Black and minority ethnic teachers for the workforce to reflect the population it teaches. Science especially faces some of the worst teacher shortages. But incentives to attract more people into science teaching have so far failed to make a significant impact on this shortage, and have tended to be financial; based upon the assumption that science graduates can earn considerably more outside of the relatively low-paid role of teaching. Unlike the well-documented shortage of teachers in England, there is currently very little research into the scale of the teacher shortage in Canada, partly due to differences in governance and contexts across the different provinces. However, in contrast to the surplus of teachers seen in recent years, there are now signs of an increasing shortage of teachers. This summer in Québec, where I intend to complete this exchange, the government reported that there were over 250 empty teacher vacancies in the province, and there are concerns that Covid-19 is likely to make things worse. As in England, there is also a severe and growing underrepresentation of people of colour in Canada's teaching workforce. This is particularly worrying within the context of an increasingly diverse Canadian population. Also as in England, this shortage is not spread evenly. Science teachers are some of the most needed. However, unlike in England, teacher salaries across Canada are amongst the highest of the OECD community, and subject-specific incentives have yet to be used. The shortage of science teachers especially, seen in both England and Canada, is of particular concern given that there is a globally-recognised STEM (Science, Technology, Engineering and Mathematics) skills shortage, likely to increase due to Covid-19. This growing demand for more young people studying and working in STEM will not be met without enough qualified science teachers. Yet in order to improve this situation, we need to better understand science teacher supply patterns. To date, research into teacher supply in science (and other disciplines) has been conducted by specialists in teacher education. From this we know that science teachers report becoming teachers not because they always wanted to, but after having had positive teaching-like experiences. We also know from existing science identities research from both the host and home supervisors that social and cultural influences work to influence whether and how people see different sciences roles as 'for me' or not. This exchange will help me to develop my research and communication skills whilst conducting comparative research to develop understandings of who does, and importantly who does not, want to become a science teacher in the UK and Canada, and why. I will build upon my existing expertise in science identity development amongst young people, and learn from the expertise of Dr Gonsalves and her colleagues in science teacher identities, and how teaching-like experiences can affect these identities. Combining these fields will help me to contribute to understandings of how people's identities shape how they feel about becoming science teachers.

    more_vert
  • Funder: UKRI Project Code: EP/V000683/1
    Funder Contribution: 42,298 GBP

    A central goal of this Overseas Travel Grant proposal is the establishment of a network of leading researchers with expertise in bone and tooth formation who share the believe that a comprehensive understanding of the nanoscale organization of both mineral and organic phase is at the heart of the development of new approaches for medical treatments. The proposed methodology is making use of the advancement of high-resolution electron imaging and spectroscopy to gain insights into the 3D structure and composition on the nanoscale. This approach is of great importance for a full understanding of the mechanisms behind structure formation and potential failure mechanisms in bones and teeth. In a recent publication (Reznikov et al., Science 2018) we were able to identify 12 levels of organisation in bone from the nano- to the macroscopic scale with a self-similar organisation pattern emerging across the different length-scales. These findings indicate the importance to understand the structure of mineralised tissue on the nanoscale. Based on this work I aim to explore the application of nanoscale imaging using advanced electron microscopy and spectroscopy to mineralised tissue such as bone cells and teeth. In both cases it is highly exciting to gain a full image of the mineral/organic assembly in healthy and disease affected tissues. The complex interplay between the mineral and the organic phases in bones and teeth appears to strongly affect the properties of the resulting biomineral with significant effects of disruptions on the nanoscale due to mineralisation affecting diseases (e.g. osteogenesis imperfecta or amelogenesis imperfecta, osteoporosis, arthritis). Hence, this work will provide a platform for future collaboration with leading life scientists and clinicians and will enable to link the high-resolution information gained by the chosen approaches with diagnostic observations. Both hosts at McGill University in Montreal and University of Connecticut in Hartford provide ideal conditions for both training and research since they have an excellent international reputation on health related materials research and provide access to an outstanding set of experimental techniques to achieve the goals of this proposal.

    more_vert
  • Funder: EC Project Code: 696295
    Overall Budget: 14,403,800 EURFunder Contribution: 4,753,240 EUR

    ERA-HDHL is a proposal of ERA-NET Cofund in the field of nutrition and health to support the Joint Programme Initiative Healthy Diet for a Healthy Life (JPI HDHL). Nowadays, there is a high burden of non-communicable diseases due to unhealthy diet and lifestyle patterns. The 24 members of the JPI HDHL are working together to develop means to (1) motivate people to adopt healthier lifestyles including dietary choices and physical activity, (2) develop and produce healthy, high-quality, safe and sustainable foods and (3) prevent diet-related diseases. Between 2012 and 2015, JPI HDHL had implemented 7 JFAs with 40 M€ funds from national funding. The JPI HDHL is now set for further enhancement in tight coordination with the EC through the ERA-NET Cofund instrument. ERA-HDHL will provide a robust platform for implementing joint funding actions (JFAs) that address the needs identified in the JPI HDHL strategic research agenda and strengthen the research funding activities of JPI HDHL. An EC cofunded call on the identification and validation of biomarkers in nutrition and health will be implemented. For this foreseen action, the member countries of the JPI HDHL have doubled their financial commitment comparing to previous JFA implemented on a similar topic. Moreover, ERA-HDHL will launch at least 3 additional JFAs in line to fulfil the JPI HDHL objectives.

    visibility3K
    visibilityviews2,668
    downloaddownloads5,614
    Powered by Usage counts
    more_vert
  • Funder: NSF Project Code: 1907243
    Funder Contribution: 138,000 USD
    more_vert
  • Funder: NSF Project Code: 1803086
    more_vert
  • Funder: UKRI Project Code: EP/S016570/1
    Funder Contribution: 6,604,390 GBP

    Given the unprecedented demand for mobile capacity beyond that available from the RF spectrum, it is natural to consider the infrared and visible light spectrum for future terrestrial wireless systems. Wireless systems using these parts of the electromagnetic spectrum could be classified as nmWave wireless communications system in relation to mmWave radio systems and both are being standardised in current 5G systems. TOWS, therefore, will provide a technically logical pathway to ensure that wireless systems are future-proof and that they can deliver the capacities that future data intensive services such as high definition (HD) video streaming, augmented reality, virtual reality and mixed reality will demand. Light based wireless communication systems will not be in competition with RF communications, but instead these systems follow a trend that has been witnessed in cellular communications over the last 30 years. Light based wireless communications simply adds new capacity - the available spectrum is 2600 times the RF spectrum. 6G and beyond promise increased wireless capacity to accommodate this growth in traffic in an increasingly congested spectrum, however action is required now to ensure UK leadership of the fast moving 6G field. Optical wireless (OW) opens new spectral bands with a bandwidth exceeding 540 THz using simple sources and detectors and can be simpler than cellular and WiFi with a significantly larger spectrum. It is the best choice of spectrum beyond millimetre waves, where unlike the THz spectrum (the other possible choice), OW avoids complex sources and detectors and has good indoor channel conditions. Optical signals, when used indoors, are confined to the environment in which they originate, which offers added security at the physical layer and the ability to re-use wavelengths in adjacent rooms, thus radically increasing capacity. Our vision is to develop and experimentally demonstrate multiuser Terabit/s optical wireless systems that offer capacities at least two orders of magnitude higher than the current planned 5G optical and radio wireless systems, with a roadmap to wireless systems that can offer up to four orders of magnitude higher capacity. There are four features of the proposed system which make possible such unprecedented capacities to enable this disruptive advance. Firstly, unlike visible light communications (VLC), we will exploit the infrared spectrum, this providing a solution to the light dimming problem associated with VLC, eliminating uplink VLC glare and thus supporting bidirectional communications. Secondly, to make possible much greater transmission capacities and multi-user, multi-cell operation, we will introduce a new type of LED-like steerable laser diode array, which does not suffer from the speckle impairments of conventional laser diodes while ensuring ultrahigh speed performance. Thirdly, with the added capacity, we will develop native OW multi-user systems to share the resources, these being adaptively directional to allow full coverage with reduced user and inter-cell interference and finally incorporate RF systems to allow seamless transition and facilitate overall network control, in essence to introduce software defined radio to optical wireless. This means that OW multi-user systems can readily be designed to allow very high aggregate capacities as beams can be controlled in a compact manner. We will develop advanced inter-cell coding and handover for our optical multi-user systems, this also allowing seamless handover with radio systems when required such as for resilience. We believe that this work, though challenging, is feasible as it will leverage existing skills and research within the consortium, which includes excellence in OW link design, advanced coding and modulation, optimised algorithms for front-haul and back-haul networking, expertise in surface emitting laser design and single photon avalanche detectors for ultra-sensitive detection.

    visibility78
    visibilityviews78
    downloaddownloads327
    Powered by Usage counts
    more_vert