Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
71 Projects

  • Canada
  • OA Publications Mandate: No
  • 2019

10
arrow_drop_down
  • Funder: SNSF Project Code: 184074
    Funder Contribution: 60,862
    more_vert
  • Funder: SNSF Project Code: 184004
    Funder Contribution: 124,150
    more_vert
  • Funder: SNSF Project Code: 181062
    Funder Contribution: 73,600
    more_vert
  • Funder: SNSF Project Code: 181512
    Funder Contribution: 47,600
    more_vert
  • Funder: UKRI Project Code: EP/S023836/1
    Funder Contribution: 5,530,580 GBP

    The EPSRC Centre for Doctoral Training in Renewable Energy Northeast Universities (ReNU) is driven by industry and market needs, which indicate unprecedented growth in renewable and distributed energy to 2050. This growth is underpinned by global demand for electricity which will outstrip growth in demand for other sources by more than two to one (The drivers of global energy demand growth to 2050, 2016, McKinsey). A significant part of this demand will arise from vast numbers of distributed, but interconnected devices (estimated to reach 40 billion by 2024) serving sectors such as healthcare (for ageing populations) and personal transport (for reduced carbon dioxide emission). The distinctive remit of ReNU therefore is to focus on materials innovations for small-to-medium scale energy conversion and storage technologies that are sustainable and highly scalable. ReNU will be delivered by Northumbria, Newcastle and Durham Universities, whose world-leading expertise and excellent links with industry in this area have been recognised by the recent award of the North East Centre for Energy Materials (NECEM, award number: EP/R021503/1). This research-focused programme will be highly complementary to ReNU which is a training-focused programme. A key strength of the ReNU consortium is the breadth of expertise across the energy sector, including: thin film and new materials; direct solar energy conversion; turbines for wind, wave and tidal energy; piezoelectric and thermoelectric devices; water splitting; CO2 valorisation; batteries and fuel cells. Working closely with a balanced portfolio of 36 partners that includes multinational companies, small and medium size enterprises and local Government organisations, the ReNU team has designed a compelling doctoral training programme which aims to engender entrepreneurial skills which will drive UK regional and national productivity in the area of Clean Growth, one of four Grand Challenges identified in the UK Government's recent Industrial Strategy. The same group of partners will also provide significant input to the ReNU in the form of industrial supervision, training for doctoral candidates and supervisors, and access to facilities and equipment. Success in renewable energy and sustainable distributed energy fundamentally requires a whole systems approach as well as understanding of political, social and technical contexts. ReNU's doctoral training is thus naturally suited to a cohort approach in which cross-fertilisation of knowledge and ideas is necessary and embedded. The training programme also aims to address broader challenges facing wider society including unconscious bias training and outreach to address diversity issues in science, technology, engineering and mathematics subjects and industries. Furthermore, external professional accreditation will be sought for ReNU from the Institute of Physics, Royal Society of Chemistry and Institute of Engineering Technology, thus providing a starting point from which doctoral graduates will work towards "Chartered" status. The combination of an industry-driven doctoral training programme to meet identifiable market needs, strong industrial commitment through the provision of training, facilities and supervision, an established platform of research excellence in energy materials between the institutions and unique training opportunities that include internationalisation and professional accreditation, creates a transformative programme to drive forward UK innovation in renewable and sustainable distributed energy.

    visibility53
    visibilityviews53
    downloaddownloads104
    Powered by Usage counts
    more_vert
  • Funder: SNSF Project Code: 184423
    Funder Contribution: 76,540
    more_vert
  • Funder: UKRI Project Code: EP/S016570/1
    Funder Contribution: 6,604,390 GBP

    Given the unprecedented demand for mobile capacity beyond that available from the RF spectrum, it is natural to consider the infrared and visible light spectrum for future terrestrial wireless systems. Wireless systems using these parts of the electromagnetic spectrum could be classified as nmWave wireless communications system in relation to mmWave radio systems and both are being standardised in current 5G systems. TOWS, therefore, will provide a technically logical pathway to ensure that wireless systems are future-proof and that they can deliver the capacities that future data intensive services such as high definition (HD) video streaming, augmented reality, virtual reality and mixed reality will demand. Light based wireless communication systems will not be in competition with RF communications, but instead these systems follow a trend that has been witnessed in cellular communications over the last 30 years. Light based wireless communications simply adds new capacity - the available spectrum is 2600 times the RF spectrum. 6G and beyond promise increased wireless capacity to accommodate this growth in traffic in an increasingly congested spectrum, however action is required now to ensure UK leadership of the fast moving 6G field. Optical wireless (OW) opens new spectral bands with a bandwidth exceeding 540 THz using simple sources and detectors and can be simpler than cellular and WiFi with a significantly larger spectrum. It is the best choice of spectrum beyond millimetre waves, where unlike the THz spectrum (the other possible choice), OW avoids complex sources and detectors and has good indoor channel conditions. Optical signals, when used indoors, are confined to the environment in which they originate, which offers added security at the physical layer and the ability to re-use wavelengths in adjacent rooms, thus radically increasing capacity. Our vision is to develop and experimentally demonstrate multiuser Terabit/s optical wireless systems that offer capacities at least two orders of magnitude higher than the current planned 5G optical and radio wireless systems, with a roadmap to wireless systems that can offer up to four orders of magnitude higher capacity. There are four features of the proposed system which make possible such unprecedented capacities to enable this disruptive advance. Firstly, unlike visible light communications (VLC), we will exploit the infrared spectrum, this providing a solution to the light dimming problem associated with VLC, eliminating uplink VLC glare and thus supporting bidirectional communications. Secondly, to make possible much greater transmission capacities and multi-user, multi-cell operation, we will introduce a new type of LED-like steerable laser diode array, which does not suffer from the speckle impairments of conventional laser diodes while ensuring ultrahigh speed performance. Thirdly, with the added capacity, we will develop native OW multi-user systems to share the resources, these being adaptively directional to allow full coverage with reduced user and inter-cell interference and finally incorporate RF systems to allow seamless transition and facilitate overall network control, in essence to introduce software defined radio to optical wireless. This means that OW multi-user systems can readily be designed to allow very high aggregate capacities as beams can be controlled in a compact manner. We will develop advanced inter-cell coding and handover for our optical multi-user systems, this also allowing seamless handover with radio systems when required such as for resilience. We believe that this work, though challenging, is feasible as it will leverage existing skills and research within the consortium, which includes excellence in OW link design, advanced coding and modulation, optimised algorithms for front-haul and back-haul networking, expertise in surface emitting laser design and single photon avalanche detectors for ultra-sensitive detection.

    visibility78
    visibilityviews78
    downloaddownloads327
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/T000414/1
    Funder Contribution: 6,560,540 GBP

    PREMIERE will integrate challenges identified by the EPSRC Prosperity Outcomes and the Industrial Strategy Challenge Fund (ISCF) in healthcare (Healthy Nation), energy (Resilient Nation), manufacturing and digital technologies (Resilient Nation, Productive Nation) as areas to drive economic growth. The programme will bring together a multi-disciplinary team of researchers to create unprecedented impact in these sectors through the creation of a next-generation predictive framework for complex multiphase systems. Importantly, the framework methodology will span purely physics-driven, CFD-mediated solutions at one extreme, and data-centric solutions at the other where the complexity of the phenomena masks the underlying physics. The framework will advance the current state-of-the-art in uncertainty quantification, adjoint sensitivity, data-assimilation, ensemble methods, CFD, and design of experiments to 'blend' the two extremes in order to create ultra-fast multi-fidelity, predictive models, supported by cutting-edge experimental investigations. This transformative technology will be sufficiently generic so as to address a wide spectrum of challenges across the ISCF areas, and will empower the user with optimal compromises between off-line (modelling) and on-line (simulation) efforts so as to meet an a priori 'error bar' on the model outputs. The investigators' synergy, and their long-standing industrial collaborations, will ensure that PREMIERE will result in a paradigm-shift in multiphase flow research worldwide. We will demonstrate our capabilities using exemplar challenges, of central importance to their respective sectors in close collaboration with our industrial and healthcare partners. Our PREMIERE framework will provide novel and more efficient manufacturing processes, reliable design tools for the oil-and-gas industry, which remove conservatism in design, improve safety management, and reduce emissions and carbon footprint. This framework will also provide enabling technology for the design, operation, and optimisation of the next-generation nuclear reactors, and associated reprocessing, as well as patient-specific therapies for diseases such as acute compartment syndrome.

    visibility267
    visibilityviews267
    downloaddownloads316
    Powered by Usage counts
    more_vert
  • Funder: SNSF Project Code: 187807
    Funder Contribution: 75,100
    more_vert
  • Funder: SNSF Project Code: 187649
    Funder Contribution: 79,600
    more_vert
Advanced search in
Projects
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
71 Projects
  • Funder: SNSF Project Code: 184074
    Funder Contribution: 60,862
    more_vert
  • Funder: SNSF Project Code: 184004
    Funder Contribution: 124,150
    more_vert
  • Funder: SNSF Project Code: 181062
    Funder Contribution: 73,600
    more_vert
  • Funder: SNSF Project Code: 181512
    Funder Contribution: 47,600
    more_vert
  • Funder: UKRI Project Code: EP/S023836/1
    Funder Contribution: 5,530,580 GBP

    The EPSRC Centre for Doctoral Training in Renewable Energy Northeast Universities (ReNU) is driven by industry and market needs, which indicate unprecedented growth in renewable and distributed energy to 2050. This growth is underpinned by global demand for electricity which will outstrip growth in demand for other sources by more than two to one (The drivers of global energy demand growth to 2050, 2016, McKinsey). A significant part of this demand will arise from vast numbers of distributed, but interconnected devices (estimated to reach 40 billion by 2024) serving sectors such as healthcare (for ageing populations) and personal transport (for reduced carbon dioxide emission). The distinctive remit of ReNU therefore is to focus on materials innovations for small-to-medium scale energy conversion and storage technologies that are sustainable and highly scalable. ReNU will be delivered by Northumbria, Newcastle and Durham Universities, whose world-leading expertise and excellent links with industry in this area have been recognised by the recent award of the North East Centre for Energy Materials (NECEM, award number: EP/R021503/1). This research-focused programme will be highly complementary to ReNU which is a training-focused programme. A key strength of the ReNU consortium is the breadth of expertise across the energy sector, including: thin film and new materials; direct solar energy conversion; turbines for wind, wave and tidal energy; piezoelectric and thermoelectric devices; water splitting; CO2 valorisation; batteries and fuel cells. Working closely with a balanced portfolio of 36 partners that includes multinational companies, small and medium size enterprises and local Government organisations, the ReNU team has designed a compelling doctoral training programme which aims to engender entrepreneurial skills which will drive UK regional and national productivity in the area of Clean Growth, one of four Grand Challenges identified in the UK Government's recent Industrial Strategy. The same group of partners will also provide significant input to the ReNU in the form of industrial supervision, training for doctoral candidates and supervisors, and access to facilities and equipment. Success in renewable energy and sustainable distributed energy fundamentally requires a whole systems approach as well as understanding of political, social and technical contexts. ReNU's doctoral training is thus naturally suited to a cohort approach in which cross-fertilisation of knowledge and ideas is necessary and embedded. The training programme also aims to address broader challenges facing wider society including unconscious bias training and outreach to address diversity issues in science, technology, engineering and mathematics subjects and industries. Furthermore, external professional accreditation will be sought for ReNU from the Institute of Physics, Royal Society of Chemistry and Institute of Engineering Technology, thus providing a starting point from which doctoral graduates will work towards "Chartered" status. The combination of an industry-driven doctoral training programme to meet identifiable market needs, strong industrial commitment through the provision of training, facilities and supervision, an established platform of research excellence in energy materials between the institutions and unique training opportunities that include internationalisation and professional accreditation, creates a transformative programme to drive forward UK innovation in renewable and sustainable distributed energy.

    visibility53
    visibilityviews53
    downloaddownloads104
    Powered by Usage counts
    more_vert
  • Funder: SNSF Project Code: 184423
    Funder Contribution: 76,540
    more_vert
  • Funder: UKRI Project Code: EP/S016570/1
    Funder Contribution: 6,604,390 GBP

    Given the unprecedented demand for mobile capacity beyond that available from the RF spectrum, it is natural to consider the infrared and visible light spectrum for future terrestrial wireless systems. Wireless systems using these parts of the electromagnetic spectrum could be classified as nmWave wireless communications system in relation to mmWave radio systems and both are being standardised in current 5G systems. TOWS, therefore, will provide a technically logical pathway to ensure that wireless systems are future-proof and that they can deliver the capacities that future data intensive services such as high definition (HD) video streaming, augmented reality, virtual reality and mixed reality will demand. Light based wireless communication systems will not be in competition with RF communications, but instead these systems follow a trend that has been witnessed in cellular communications over the last 30 years. Light based wireless communications simply adds new capacity - the available spectrum is 2600 times the RF spectrum. 6G and beyond promise increased wireless capacity to accommodate this growth in traffic in an increasingly congested spectrum, however action is required now to ensure UK leadership of the fast moving 6G field. Optical wireless (OW) opens new spectral bands with a bandwidth exceeding 540 THz using simple sources and detectors and can be simpler than cellular and WiFi with a significantly larger spectrum. It is the best choice of spectrum beyond millimetre waves, where unlike the THz spectrum (the other possible choice), OW avoids complex sources and detectors and has good indoor channel conditions. Optical signals, when used indoors, are confined to the environment in which they originate, which offers added security at the physical layer and the ability to re-use wavelengths in adjacent rooms, thus radically increasing capacity. Our vision is to develop and experimentally demonstrate multiuser Terabit/s optical wireless systems that offer capacities at least two orders of magnitude higher than the current planned 5G optical and radio wireless systems, with a roadmap to wireless systems that can offer up to four orders of magnitude higher capacity. There are four features of the proposed system which make possible such unprecedented capacities to enable this disruptive advance. Firstly, unlike visible light communications (VLC), we will exploit the infrared spectrum, this providing a solution to the light dimming problem associated with VLC, eliminating uplink VLC glare and thus supporting bidirectional communications. Secondly, to make possible much greater transmission capacities and multi-user, multi-cell operation, we will introduce a new type of LED-like steerable laser diode array, which does not suffer from the speckle impairments of conventional laser diodes while ensuring ultrahigh speed performance. Thirdly, with the added capacity, we will develop native OW multi-user systems to share the resources, these being adaptively directional to allow full coverage with reduced user and inter-cell interference and finally incorporate RF systems to allow seamless transition and facilitate overall network control, in essence to introduce software defined radio to optical wireless. This means that OW multi-user systems can readily be designed to allow very high aggregate capacities as beams can be controlled in a compact manner. We will develop advanced inter-cell coding and handover for our optical multi-user systems, this also allowing seamless handover with radio systems when required such as for resilience. We believe that this work, though challenging, is feasible as it will leverage existing skills and research within the consortium, which includes excellence in OW link design, advanced coding and modulation, optimised algorithms for front-haul and back-haul networking, expertise in surface emitting laser design and single photon avalanche detectors for ultra-sensitive detection.

    visibility78
    visibilityviews78
    downloaddownloads327
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/T000414/1
    Funder Contribution: 6,560,540 GBP

    PREMIERE will integrate challenges identified by the EPSRC Prosperity Outcomes and the Industrial Strategy Challenge Fund (ISCF) in healthcare (Healthy Nation), energy (Resilient Nation), manufacturing and digital technologies (Resilient Nation, Productive Nation) as areas to drive economic growth. The programme will bring together a multi-disciplinary team of researchers to create unprecedented impact in these sectors through the creation of a next-generation predictive framework for complex multiphase systems. Importantly, the framework methodology will span purely physics-driven, CFD-mediated solutions at one extreme, and data-centric solutions at the other where the complexity of the phenomena masks the underlying physics. The framework will advance the current state-of-the-art in uncertainty quantification, adjoint sensitivity, data-assimilation, ensemble methods, CFD, and design of experiments to 'blend' the two extremes in order to create ultra-fast multi-fidelity, predictive models, supported by cutting-edge experimental investigations. This transformative technology will be sufficiently generic so as to address a wide spectrum of challenges across the ISCF areas, and will empower the user with optimal compromises between off-line (modelling) and on-line (simulation) efforts so as to meet an a priori 'error bar' on the model outputs. The investigators' synergy, and their long-standing industrial collaborations, will ensure that PREMIERE will result in a paradigm-shift in multiphase flow research worldwide. We will demonstrate our capabilities using exemplar challenges, of central importance to their respective sectors in close collaboration with our industrial and healthcare partners. Our PREMIERE framework will provide novel and more efficient manufacturing processes, reliable design tools for the oil-and-gas industry, which remove conservatism in design, improve safety management, and reduce emissions and carbon footprint. This framework will also provide enabling technology for the design, operation, and optimisation of the next-generation nuclear reactors, and associated reprocessing, as well as patient-specific therapies for diseases such as acute compartment syndrome.

    visibility267
    visibilityviews267
    downloaddownloads316
    Powered by Usage counts
    more_vert
  • Funder: SNSF Project Code: 187807
    Funder Contribution: 75,100
    more_vert
  • Funder: SNSF Project Code: 187649
    Funder Contribution: 79,600
    more_vert