Filters
Clear AllLoading
Open Access Mandate for Publications assignment_turned_in Project2020 - 2022 UBCUBCFunder: WT Project Code: 215695Funder Contribution: 835,847 GBPWe are proposing a new and innovative precision approach to the identification of severe infections and sepsis in children. This data-driven approach to diagnosis will overcome many of the limitations of current expert opinion-based triage guidelines. Smart technology has the potential to overcome the barrier of limited clinical expertise in the identification of the child at risk. This mobile health platform, with sensors and data-driven applications, will provide real-time individualised risk prediction to facilitate timely and effective targeted treatment at first contact, regardless of location. This low-cost technology will provide rapid triage in remote areas globally where specialists are not regularly available. We will trigger rapid, highly effective and low-cost interventions such as antibiotics, fluid, oxygen therapy and other special investigations to children determined to be most at risk of sepsis, based on data-driven prediction. Thus, these innovations will improve timely access to life-saving treatments for children in the poorest countries where deaths from infection and sepsis are common. Children in poor families or in populations marginalized by health and social inequities are especially vulnerable to infections. In these children, infection is a major contributor to disability and years of life lost and has a great economic and social cost. Sepsis is the leading cause of death and disability in children, every hour of delay in treatment is associated with greater organ damage and ultimately death. The challenges, especially in poor countries, are the delays in diagnosis and the inability to identify children in urgent need of treatment. To circumvent these challenges, we propose the implementation and evaluation of a trigger tool that will reduce the time to diagnosis and prompt the timely initiation of life-saving treatment. The key innovations are 1) a data-driven approach to rapid diagnosis of sepsis severity and 2) a low-cost digital tagging system to track the time to treatment. The tool will require minimal cost, clinical expertise and training or time to use. The tool will identify high risk children and reduce time to treatment. Our mobile platform (mobile device and dashboard) will create a low-cost, highly scalable solution for children with sepsis.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=wt__________::65a34d7cf5b6dd4b42d05d7e0cd7cac3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=wt__________::65a34d7cf5b6dd4b42d05d7e0cd7cac3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2020 - 2022 ORION SANTE SARL, K.A.B.S., AMC, STICHTING VUMC, EXVASTAT LTDORION SANTE SARL,K.A.B.S.,AMC,STICHTING VUMC,EXVASTAT LTDFunder: EC Project Code: 101005142Overall Budget: 3,985,730 EURFunder Contribution: 3,662,960 EURThe accumulation of fluid in the lungs is a significant feature of the pathology in patients with severe Covid-19 infection. This build up of fluid, contributes to difficulty in breathing and in some cases death. This fluid in the lungs results in part from direct damage to cilia and mucus cells and resulting debris and in part due to plasma extravasation triggered by the immune response to infection and associated damage. Imatinib, a generic marketed drug has been shown to reduce plasma extravasation following inflammatory challenge in animal models and this effect is supported by anecdotal observations in the clinic. This project proposes to rapidly implement a multi-center, randomized, open label, double-blind, Phase IIb study to evaluate the efficacy, safety and pharmacokinetics of imatinib mesilate in patients with corona-virus associated pneumonitis. 100 patients entering ICU with a diagnosis of corona-virus associated pneumonitis will be randomised, half receiving i.v. imatinob , 200mg bid for 5 days and one half placebo. Adverse events, immunological parameters and imatinib pharmacokineticswill be monitored. Outcome measures Primary: PaO2/FiO2 ratio. Secondary: rate of intubation/need for mechanical ventilation, pulmonary edema on high resolution CT, Oxygenation Index, respiratory mechanics, duration of mechanical ventilation, fluid balance, ICU length of stay, mortality. This project has already received EMA scientific advice for the treatment of acute respirator y distress syndrome and has granted orphan drug status.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::08404afa351c1a0ed1d966699f99f282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 9visibility views 9 download downloads 25 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::08404afa351c1a0ed1d966699f99f282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
Open Access Mandate for Publications assignment_turned_in Project2020 - 2022 UBCUBCFunder: WT Project Code: 215695Funder Contribution: 835,847 GBPWe are proposing a new and innovative precision approach to the identification of severe infections and sepsis in children. This data-driven approach to diagnosis will overcome many of the limitations of current expert opinion-based triage guidelines. Smart technology has the potential to overcome the barrier of limited clinical expertise in the identification of the child at risk. This mobile health platform, with sensors and data-driven applications, will provide real-time individualised risk prediction to facilitate timely and effective targeted treatment at first contact, regardless of location. This low-cost technology will provide rapid triage in remote areas globally where specialists are not regularly available. We will trigger rapid, highly effective and low-cost interventions such as antibiotics, fluid, oxygen therapy and other special investigations to children determined to be most at risk of sepsis, based on data-driven prediction. Thus, these innovations will improve timely access to life-saving treatments for children in the poorest countries where deaths from infection and sepsis are common. Children in poor families or in populations marginalized by health and social inequities are especially vulnerable to infections. In these children, infection is a major contributor to disability and years of life lost and has a great economic and social cost. Sepsis is the leading cause of death and disability in children, every hour of delay in treatment is associated with greater organ damage and ultimately death. The challenges, especially in poor countries, are the delays in diagnosis and the inability to identify children in urgent need of treatment. To circumvent these challenges, we propose the implementation and evaluation of a trigger tool that will reduce the time to diagnosis and prompt the timely initiation of life-saving treatment. The key innovations are 1) a data-driven approach to rapid diagnosis of sepsis severity and 2) a low-cost digital tagging system to track the time to treatment. The tool will require minimal cost, clinical expertise and training or time to use. The tool will identify high risk children and reduce time to treatment. Our mobile platform (mobile device and dashboard) will create a low-cost, highly scalable solution for children with sepsis.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=wt__________::65a34d7cf5b6dd4b42d05d7e0cd7cac3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=wt__________::65a34d7cf5b6dd4b42d05d7e0cd7cac3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2020 - 2022 ORION SANTE SARL, K.A.B.S., AMC, STICHTING VUMC, EXVASTAT LTDORION SANTE SARL,K.A.B.S.,AMC,STICHTING VUMC,EXVASTAT LTDFunder: EC Project Code: 101005142Overall Budget: 3,985,730 EURFunder Contribution: 3,662,960 EURThe accumulation of fluid in the lungs is a significant feature of the pathology in patients with severe Covid-19 infection. This build up of fluid, contributes to difficulty in breathing and in some cases death. This fluid in the lungs results in part from direct damage to cilia and mucus cells and resulting debris and in part due to plasma extravasation triggered by the immune response to infection and associated damage. Imatinib, a generic marketed drug has been shown to reduce plasma extravasation following inflammatory challenge in animal models and this effect is supported by anecdotal observations in the clinic. This project proposes to rapidly implement a multi-center, randomized, open label, double-blind, Phase IIb study to evaluate the efficacy, safety and pharmacokinetics of imatinib mesilate in patients with corona-virus associated pneumonitis. 100 patients entering ICU with a diagnosis of corona-virus associated pneumonitis will be randomised, half receiving i.v. imatinob , 200mg bid for 5 days and one half placebo. Adverse events, immunological parameters and imatinib pharmacokineticswill be monitored. Outcome measures Primary: PaO2/FiO2 ratio. Secondary: rate of intubation/need for mechanical ventilation, pulmonary edema on high resolution CT, Oxygenation Index, respiratory mechanics, duration of mechanical ventilation, fluid balance, ICU length of stay, mortality. This project has already received EMA scientific advice for the treatment of acute respirator y distress syndrome and has granted orphan drug status.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::08404afa351c1a0ed1d966699f99f282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 9visibility views 9 download downloads 25 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::08404afa351c1a0ed1d966699f99f282&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu