117,997 Research products, page 1 of 11,800
Loading
- Research data . 2019Open AccessAuthors:SXS Collaboration;SXS Collaboration;Publisher: ZenodoProject: NSERC , NSF | Gravitational Radiation a... (1708213), NSF | Sustained-Petascale In Ac... (1238993), NSF | Maximizing Science Output... (1708212), NSF | Maximizing Scientific Out... (1806665), NSF | Leadership Class Scientif... (0725070), NWO | Precision Gravity: black ... (29769), NSF | Collaborative Research: P... (1713694)
Simulation of a black-hole binary system evolved by the SpEC code.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . Image . 2007Open AccessAuthors:Meghan Ward;Meghan Ward;
doi: 10.7939/r3-vrnj-6477
Publisher: University of Alberta LibrariesCountry: Canada1 original
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2018Open AccessAuthors:Field, Daniel; Hsiang, Allison;Field, Daniel; Hsiang, Allison;Publisher: figshareProject: NSERC
Nexus file for phylogenetic analysis. (ZIP 7 kb)
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019Open AccessAuthors:Tian, Bo; Tianquan Lu; Xu, Yang; Ruling Wang; Guanqun Chen;Tian, Bo; Tianquan Lu; Xu, Yang; Ruling Wang; Guanqun Chen;Publisher: figshareProject: NSERC
Additional file 3: Table S2. Summary of the Illumina sequencing data.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . Image . 2021Open AccessAuthors:(:Unkn) Unknown;(:Unkn) Unknown;
doi: 10.25316/ir-16742
Publisher: Electronic version published by Vancouver Island UniversityCountry: CanadaMoving library cabinets
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019Open AccessAuthors:SXS Collaboration;SXS Collaboration;Publisher: ZenodoProject: NSERC , NSF | Collaborative Research: T... (1333129), NSF | Gravitational Radiation a... (1708213), NSF | Gravitational Radiation a... (1404569), NSF | Collaborative Research: P... (1440083), NSF | Maximizing Science Output... (1708212), NSF | CAREER: General Relativis... (1151197), NSF | Leadership Class Scientif... (0725070), NSF | MRI-R2: Acquisition of a ... (0960291), NSF | Sustained-Petascale In Ac... (1238993),...
Simulation of a black-hole binary system evolved by the SpEC code.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . Image . 1970Open AccessAuthors:University Of Alberta Department Of Anthropology;University Of Alberta Department Of Anthropology;
doi: 10.7939/r39g5gm5n
Country: Canada1 original
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . Image . 2013Open Access English
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019Open AccessAuthors:SXS Collaboration;SXS Collaboration;Publisher: ZenodoProject: NSF | Maximizing Science Output... (1708212), NSERC , NSF | Gravitational Radiation a... (1708213), NSF | Leadership Class Scientif... (0725070), NSF | Sustained-Petascale In Ac... (1238993), NSF | Collaborative Research: P... (1713694), NWO | Precision Gravity: black ... (29769), NSF | Maximizing Scientific Out... (1806665)
Simulation of a black-hole binary system evolved by the SpEC code.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2015 . Embargo End Date: 25 Jun 2020Open Access EnglishAuthors:Hargreaves, Anna L.; Bailey, Susan F.; Laird, Robert A.;Hargreaves, Anna L.; Bailey, Susan F.; Laird, Robert A.;
doi: 10.5061/dryad.g7641
Publisher: DryadProject: NSERCFig 2 (heatmap) data files and R codeData and R code needed to create Fig 2 in Hargreaves et al (2015) J Evol Biol. One data file for each of the 6 figure panels. Each file contains evolved D across the range in each of 500 generations of stable climate followed by 1000 generations of climate change.Fig 2 (heatmap).zipFig 3 (D lines) data and R codeData and R code needed to create Fig 3 in Hargreaves et al (2015) J Evol Biol. One data file for each of the 6 models shown. Each file contains evolved D across the range after 500 generations of stable climate and after 1000 generations of climate change, averaged across 10 runs per cost per model.Fig 3 (D lines).zipFig 4 (delta.D) data and R codeData and R code needed to create Fig 4 in Hargreaves et al (2015) J Evol Biol. One data file for each of the 4 models (ie figure rows) shown. Each file contains evolved D across the range after 500 generations of stable climate and after 1000 generations of climate change for 30 runs per model.Fig 4 (delta.D).zipFig 6 (D vs density) data and R codeData and R code needed to create Fig 6 in Hargreaves et al (2015) J Evol Biol. Two data files (one for evolved D and one for density) for each of 2 model runs, one with dispersal (dispersal distance =1 as normal) and one run without dispersal (dispersal distance =0).Fig 6 (D vs density).zipAppendix S1 data and R code for each figureData and R code needed to create figures in Appendix S1 in Hargreaves et al (2015) J Evol Biol. All figures remake Fig 3 while varying one parameter. Fig S1.1 shows murate = .005; Fig S1.2 shows avshift = .01, .05, .2; Fig. S1.3 shows K=10; Fig. S1.4 shows effect of eliminating kin selection by randomizing individuals within columns before each dispersal event. For each figure there is 1 data file per model. Each data file contains evolved D across the range after 500 generations of stable climate and after 1000 generations of climate change, for 10 runs per cost.Appendix S1.zipModel code Matlab fileCode to run the model simulations.rangeshift (for dryad).mFig 5 (extinction threshold) Matlab codeMatlab code to run the simulations necessary to determine the relationship between the speed of climate change (avshift) and probability of extinction.rangeshift_thresh (for dryad).m Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate-induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient. We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual-based model. We compare range-wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs), and for a single climate genotype vs. multiple genotypes locally adapted to temperature. During climate stability, dispersal decreased towards RLs when fitness was uniform, but increased when fitness declined towards RLs, due to highly dispersive genotypes maintaining sink populations at RLs, increased kin selection in smaller populations, and an emergent fitness asymmetry that favoured dispersal in low-quality habitat. However, this initial dispersal advantage at low-fitness RLs did not facilitate climate tracking, as it was outweighed by an increased probability of extinction. Locally adapted genotypes benefited from staying close to their climate optima; this selected against dispersal under stable climates but for increased dispersal throughout shifting ranges, compared to cases without local adaptation. Dispersal increased at expanding RLs in most scenarios, but only increased at the range centre and contracting RLs given local adaptation to climate.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
117,997 Research products, page 1 of 11,800
Loading
- Research data . 2019Open AccessAuthors:SXS Collaboration;SXS Collaboration;Publisher: ZenodoProject: NSERC , NSF | Gravitational Radiation a... (1708213), NSF | Sustained-Petascale In Ac... (1238993), NSF | Maximizing Science Output... (1708212), NSF | Maximizing Scientific Out... (1806665), NSF | Leadership Class Scientif... (0725070), NWO | Precision Gravity: black ... (29769), NSF | Collaborative Research: P... (1713694)
Simulation of a black-hole binary system evolved by the SpEC code.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . Image . 2007Open AccessAuthors:Meghan Ward;Meghan Ward;
doi: 10.7939/r3-vrnj-6477
Publisher: University of Alberta LibrariesCountry: Canada1 original
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2018Open AccessAuthors:Field, Daniel; Hsiang, Allison;Field, Daniel; Hsiang, Allison;Publisher: figshareProject: NSERC
Nexus file for phylogenetic analysis. (ZIP 7 kb)
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019Open AccessAuthors:Tian, Bo; Tianquan Lu; Xu, Yang; Ruling Wang; Guanqun Chen;Tian, Bo; Tianquan Lu; Xu, Yang; Ruling Wang; Guanqun Chen;Publisher: figshareProject: NSERC
Additional file 3: Table S2. Summary of the Illumina sequencing data.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . Image . 2021Open AccessAuthors:(:Unkn) Unknown;(:Unkn) Unknown;
doi: 10.25316/ir-16742
Publisher: Electronic version published by Vancouver Island UniversityCountry: CanadaMoving library cabinets
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019Open AccessAuthors:SXS Collaboration;SXS Collaboration;Publisher: ZenodoProject: NSERC , NSF | Collaborative Research: T... (1333129), NSF | Gravitational Radiation a... (1708213), NSF | Gravitational Radiation a... (1404569), NSF | Collaborative Research: P... (1440083), NSF | Maximizing Science Output... (1708212), NSF | CAREER: General Relativis... (1151197), NSF | Leadership Class Scientif... (0725070), NSF | MRI-R2: Acquisition of a ... (0960291), NSF | Sustained-Petascale In Ac... (1238993),...
Simulation of a black-hole binary system evolved by the SpEC code.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . Image . 1970Open AccessAuthors:University Of Alberta Department Of Anthropology;University Of Alberta Department Of Anthropology;
doi: 10.7939/r39g5gm5n
Country: Canada1 original
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . Image . 2013Open Access English
add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019Open AccessAuthors:SXS Collaboration;SXS Collaboration;Publisher: ZenodoProject: NSF | Maximizing Science Output... (1708212), NSERC , NSF | Gravitational Radiation a... (1708213), NSF | Leadership Class Scientif... (0725070), NSF | Sustained-Petascale In Ac... (1238993), NSF | Collaborative Research: P... (1713694), NWO | Precision Gravity: black ... (29769), NSF | Maximizing Scientific Out... (1806665)
Simulation of a black-hole binary system evolved by the SpEC code.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2015 . Embargo End Date: 25 Jun 2020Open Access EnglishAuthors:Hargreaves, Anna L.; Bailey, Susan F.; Laird, Robert A.;Hargreaves, Anna L.; Bailey, Susan F.; Laird, Robert A.;
doi: 10.5061/dryad.g7641
Publisher: DryadProject: NSERCFig 2 (heatmap) data files and R codeData and R code needed to create Fig 2 in Hargreaves et al (2015) J Evol Biol. One data file for each of the 6 figure panels. Each file contains evolved D across the range in each of 500 generations of stable climate followed by 1000 generations of climate change.Fig 2 (heatmap).zipFig 3 (D lines) data and R codeData and R code needed to create Fig 3 in Hargreaves et al (2015) J Evol Biol. One data file for each of the 6 models shown. Each file contains evolved D across the range after 500 generations of stable climate and after 1000 generations of climate change, averaged across 10 runs per cost per model.Fig 3 (D lines).zipFig 4 (delta.D) data and R codeData and R code needed to create Fig 4 in Hargreaves et al (2015) J Evol Biol. One data file for each of the 4 models (ie figure rows) shown. Each file contains evolved D across the range after 500 generations of stable climate and after 1000 generations of climate change for 30 runs per model.Fig 4 (delta.D).zipFig 6 (D vs density) data and R codeData and R code needed to create Fig 6 in Hargreaves et al (2015) J Evol Biol. Two data files (one for evolved D and one for density) for each of 2 model runs, one with dispersal (dispersal distance =1 as normal) and one run without dispersal (dispersal distance =0).Fig 6 (D vs density).zipAppendix S1 data and R code for each figureData and R code needed to create figures in Appendix S1 in Hargreaves et al (2015) J Evol Biol. All figures remake Fig 3 while varying one parameter. Fig S1.1 shows murate = .005; Fig S1.2 shows avshift = .01, .05, .2; Fig. S1.3 shows K=10; Fig. S1.4 shows effect of eliminating kin selection by randomizing individuals within columns before each dispersal event. For each figure there is 1 data file per model. Each data file contains evolved D across the range after 500 generations of stable climate and after 1000 generations of climate change, for 10 runs per cost.Appendix S1.zipModel code Matlab fileCode to run the model simulations.rangeshift (for dryad).mFig 5 (extinction threshold) Matlab codeMatlab code to run the simulations necessary to determine the relationship between the speed of climate change (avshift) and probability of extinction.rangeshift_thresh (for dryad).m Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate-induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient. We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual-based model. We compare range-wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs), and for a single climate genotype vs. multiple genotypes locally adapted to temperature. During climate stability, dispersal decreased towards RLs when fitness was uniform, but increased when fitness declined towards RLs, due to highly dispersive genotypes maintaining sink populations at RLs, increased kin selection in smaller populations, and an emergent fitness asymmetry that favoured dispersal in low-quality habitat. However, this initial dispersal advantage at low-fitness RLs did not facilitate climate tracking, as it was outweighed by an increased probability of extinction. Locally adapted genotypes benefited from staying close to their climate optima; this selected against dispersal under stable climates but for increased dispersal throughout shifting ranges, compared to cases without local adaptation. Dispersal increased at expanding RLs in most scenarios, but only increased at the range centre and contracting RLs given local adaptation to climate.
Average popularityAverage popularity In bottom 99%Average influencePopularity: Citation-based measure reflecting the current impact.Average influence In bottom 99%Influence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.