Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
197,173 Research products, page 1 of 19,718

  • Canada
  • Publications
  • 01 natural sciences

10
arrow_drop_down
Relevance
arrow_drop_down
  • Closed Access
    Authors: 
    John Paul Archambault;
    Publisher: Elsevier BV
    Country: Canada

    Abstract A simple geometry is used to compare several of the available Monte Carlo software codes for radiation transport. EGSnrc, Geant4 and MCNP5 are all used to calculate the photon fluence produced from electrons incident on a copper target. Four energies for the isotropic point source are chosen to simulate the average and maximum emission energies of 32 P and 90 Y: (0.7, 1.71) MeV and (0.93, 2.28) MeV, respectively. The energy deposition in the copper target, the electron current at the target and the computational efficiency are also calculated. EGSnrc is found to be the only self-consistent code when comparing results calculated using the default transport parameters of the condensed history mode with those calculated in the single scattering mode.

  • Closed Access
    Authors: 
    Niels Van Steenkiste; Kevin C. Wakeman; Brian S. Leander;
    Publisher: Elsevier BV
    Project: NSERC

    Abstract Marine gastrotrichs of the Pacific Ocean are poorly known. Here, we report on the finding of a marine chaetonotid gastrotrich of the genus Diuronotus from an intertidal beach within the Sea of Japan in Hokkaido (Japan). The Japanese individual shows a very close resemblance to Diuronotus aspetos. This new record is a consequential extension of its biogeographic range; previous records for representatives of this genus are confined to West Greenland, the North Sea and the east coast of North America. This rarely encountered, but seemingly widespread genus of marine gastrotrichs exemplifies our limited understanding of meiofaunal diversity and distribution patterns caused by sampling bias and insufficient knowledge on nominal species complexes.

  • Open Access
    Authors: 
    Jinluo Cheng; Julien Rioux; John E. Sipe;
    Publisher: American Physical Society (APS)
    Project: NSERC

    Using an empirical pseudopotential description of electron states and an adiabatic bond charge model for phonon states in bulk silicon, we theoretically investigate two-photon indirect optical injection of carriers and spins and two-color coherent control of the motion of the injected carriers and spins. For two-photon indirect carrier and spin injection, we identify the selection rules of band edge transitions, the injection in each conduction band valley, and the injection from each phonon branch at 4 K and 300 K. At 4 K, the TA phonon-assisted transitions dominate the injection at low photon energies, and the TO phonon-assisted at high photon energies. At 300 K, the former dominates at all photon energies of interest. The carrier injection shows anisotropy and linear-circular dichroism with respect to light propagation direction. For light propagating along the $<001>$ direction, the carrier injection exhibits valley anisotropy, and the injection into the $Z$ conduction band valley is larger than that into the $X/Y$ valleys. For $��^-$ light propagating along the $<001>$ ($<111>$) direction, the degree of spin polarization gives a maximum value about 20% (6%) at 4 K and -10% (20%) at 300 K, and at both temperature shows abundant structure near the injection edges due to contributions from different phonon branches. Forthe two-color coherent current injection with an incident optical field composed of a fundamental frequency and its second harmonic, the response tensors of the electron (hole) charge and spin currents are calculated at 4 K and 300 K. We show the current control for three different polarization scenarios. The spectral dependence of the maximum swarm velocity shows that the direction of charge current reverses under increase in photon energy. 15 pages and 14 figures

  • Open Access
    Authors: 
    James O'Sullivan; Oliver Lunt; Christoph W. Zollitsch; M. L. W. Thewalt; John J. L. Morton; Arijeet Pal;
    Publisher: IOP Publishing
    Project: UKRI | EPSRC Centre for Doctoral... (EP/L015242/1), EC | LOQO-MOTIONS (771493), EC | Corr-NEQM (853368)

    Abstract Discrete time-translational symmetry in a periodically driven many-body system can be spontaneously broken to form a discrete time crystal, an exotic new phase of matter. We present observations characteristic of discrete time crystalline order in a driven system of paramagnetic P-donor impurities in isotopically enriched 28Si cooled below 10 K. The observations exhibit a stable subharmonic peak at half the drive frequency which remains pinned even in the presence of pulse error, a signature of discrete time crystalline order. This signal has a finite lifetime of ∼100 Floquet periods, but this effect is long-lived relative to coherent spin–spin interaction timescales, lasting ∼104 times longer. We present simulations of the system based on the paradigmatic central spin model and show good agreement with experiment. We investigate the role of dissipation and interactions within this model, and show that both are capable of giving rise to discrete time crystal-like behaviour.

  • Open Access English
    Authors: 
    F.L. Schaafsma; Carmen David; Evgeny A. Pakhomov; Brian P. V. Hunt; Benjamin Lange; Hauke Flores; J.A. van Franeker;
    Country: Netherlands
    Project: NWO | The imperiled role of sea... (10533)

    The condition and survival of Antarctic krill (Euphausia superba) strongly depends on sea ice conditions during winter. How krill utilize sea ice depends on several factors such as region and developmental stage. A comprehensive understanding of sea ice habitat use by krill, however, remains largely unknown. The aim of this study was to improve the understanding of the krill’s interaction with the sea ice habitat during winter/early spring by conducting large-scale sampling of the ice–water interface (0–2 m) and comparing the size and developmental stage composition of krill with the pelagic population (0–500 m). Results show that the population in the northern Weddell Sea consisted mainly of krill that were <1 year old (age class 0; AC0), and that it was comprised of multiple cohorts. Size per developmental stage differed spatially, indicating that the krill likely were advected from various origins. The size distribution of krill differed between the two depth strata sampled. Larval stages with a relatively small size (mean 7–8 mm) dominated the upper two metre layer of the water column, while larger larvae and AC0 juveniles (mean 14–15 mm) were proportionally more abundant in the 0- to 500-m stratum. Our results show that, as krill mature, their vertical distribution and utilization of the sea ice appear to change gradually. This could be the result of changes in physiology and/or behaviour, as, e.g., the krill’s energy demand and swimming capacity increase with size and age. The degree of sea ice association will have an effect on large-scale spatial distribution patterns of AC0 krill and on predictions of the consequences of sea ice decline on their survival over winter.

  • Open Access English
    Authors: 
    Kedong Yin; Hao Liu; Paul Harrison;
    Publisher: Copernicus Publications
    Project: NSERC

    We hypothesize that phytoplankton have the sequential nutrient uptake strategy to maintain nutrient stoichiometry and high primary productivity in the water column. According to this hypothesis, phytoplankton take up the most limiting nutrient first until depletion, continue to draw down non-limiting nutrients and then take up the most limiting nutrient rapidly when it is available. These processes would result in the variation of ambient nutrient ratios in the water column around the Redfield ratio. We used high-resolution continuous vertical profiles of nutrients, nutrient ratios and on-board ship incubation experiments to test this hypothesis in the Strait of Georgia. At the surface in summer, ambient NO3− was depleted with excess PO43− and SiO4− remaining, and as a result, both N : P and N : Si ratios were low. The two ratios increased to about 10 : 1 and 0. 45 : 1, respectively, at 20 m. Time series of vertical profiles showed that the leftover PO43− continued to be removed, resulting in additional phosphorus storage by phytoplankton. The N : P ratios at the nutricline in vertical profiles responded differently to mixing events. Field incubation of seawater samples also demonstrated the sequential uptake of NO3− (the most limiting nutrient) and then PO43− and SiO4− (the non-limiting nutrients). This sequential uptake strategy allows phytoplankton to acquire additional cellular phosphorus and silicon when they are available and wait for nitrogen to become available through frequent mixing of NO3− (or pulsed regenerated NH4). Thus, phytoplankton are able to maintain high productivity and balance nutrient stoichiometry by taking advantage of vigorous mixing regimes with the capacity of the stoichiometric plasticity. To our knowledge, this is the first study to show the in situ dynamics of continuous vertical profiles of N : P and N : Si ratios, which can provide insight into the in situ dynamics of nutrient stoichiometry in the water column and the inference of the transient status of phytoplankton nutrient stoichiometry in the coastal ocean.

  • Closed Access
    Authors: 
    Nancy I. Lewis; Jennifer L. Wolny; John C. Achenbach; Lee D. Ellis; Joseph S Pitula; Cheryl Rafuse; Detbra S. Rosales; Pearse McCarron;
    Country: Canada

    Abstract Benthic dinoflagellates of the toxigenic genus Coolia Meunier (Dinophyceae) are known to have a global distribution in both tropical and temperate waters. The type species, C. monotis, has been reported from the Mediterranean Sea, the NE Atlantic and from Rhode Island, USA in the NW Atlantic, whereas other species in the genus have been reported from tropical locations. Coolia cells were observed in algal drift samples collected at seven sites in Nova Scotia, Canada. Clonal isolates were established from four of these locations and identified with light and scanning electron microscopy, then confirmed with genetic sequencing to be C. monotis . This is the first record of this species in Nova Scotia. The isolates were established and incubated at 18 °C under a 14:10 L:D photoperiod with an approximate photon flux density of 50–60 μmol m −2 s −1 . Growth experiments using an isolate from Johnston Harbour (CMJH) were carried out at temperatures ranging from 5 to 30 °C under the same photoperiod with an approximate photon flux density of 45–50 μmol m −2 s −1 . Cells tolerated temperatures from 5 to 25 °C with optimum growth and mucilage aggregate production between 15 and 20 °C. Methanol extracts of this isolate examined by Liquid Chromatography-Mass Spectrometry (LC–MS) did not show the presence of the previously reported cooliatoxin. Toxic effects were assayed using two zebrafish bioassays, the Fish Embryo Toxicity (FET) assay and the General Behaviour and Toxicity (GBT) assay. The results of this study demonstrate a lack of toxicity in C. monotis from Nova Scotia, as has been reported for other genetically-confirmed isolates of this species. Conditions in which cell growth that could potentially degrade water quality and provide substrate and dispersal mechanisms for other harmful microorganisms via mucilage production are indicated.

  • Authors: 
    Masen Lamb; Andrew Norton; Bruce Macintosh; Carlos Correia; Jean-Pierre Véran; Christian Marois; Suresh Sivanandam;
    Publisher: SPIE

    We explore the application of phase diversity to calibrate the non common path aberrations (NCPA) in the Gemini Planet Imager (GPI). This is first investigated in simulation in order to characterize the ideal technique parameters with simulated GPI calibration source data. The best working simulation parameters are derived and we establish the algorithm's capability to recover an injected astigmatism. Furthermore, the real data appear to exhibit signs of de-centering between the in and out of focus images that are required by phase diversity; this effect can arise when the diverse images are acquired in closed loop and are close to the non-linear regime of the wavefront sensor. We show in simulation that this effect can inhibit our algorithm, which does not take into account the impact of de-centering between images. To mitigate this effect, we validate the technique of using a single diverse image with our algorithm; this is first demonstrated in simulation and then applied to the real GPI data. Following this approach, we find that we can successfully recover a known astigmatism injection using the real GPI data and subsequently apply an NCPA correction to GPI (in the format of offset reference slopes) to improve the relative Strehl ratio by 5%; we note this NCPA correction application is rudimentary and a more thorough application will be investigated in the near future. Finally, the estimated NCPA in the form of astigmatism and coma agree well with the magnitude of the same modes reported by Poyneer et al. 2016.

  • Closed Access
    Authors: 
    Qiulu Chu; Kai Song; Jing Wang; Jinguang Hu; Xueyan Chen;
    Publisher: Elsevier BV

    Abstract In this work, the beneficial effect of carbocation scavenger additives on hardwood pretreatment was revealed by significantly improved biomass saccharification: cellulose hydrolysis yield was increased by over 15% after steam pretreatment of poplar, while that was enhanced by more than 48% after dilute acid pretreatment. Besides, the relative contributions of lignin towards enzyme binding and physical barrier effect for proposed mechanisms were quantified. Results indicated that the addition of carbocation scavenger, 2-naphthol-7-sulfonate, resulted in acid groups incorporation of 62.36 mmol/kg to lignin, which mitigated enzyme non-productive binding. Moreover, enlarged biomass porosity and reduced surface lignin coverage were detected through BET and XPS analysis, respectively, which mostly related to the diminished physical barrier effect of lignin. As a result, the lignin inhibitions were significantly suppressed through the addition of carbocation scavenger, giving rise to significantly improved enzymatic hydrolysis of hardwood.

  • Open Access
    Authors: 
    Jeremy Kahn; Mikhail Lyubich;
    Publisher: Societe Mathematique de France
    Project: NSERC

    A decoration of the Mandelbrot set $M$ is a part of $M$ cut off by two external rays landing at some tip of a satellite copy of $M$ attached to the main cardioid. In this paper we consider infinitely renormalizable quadratic polynomials satisfying the decoration condition, which means that the combinatorics of the renormalization operators involved is selected from a finite family of decorations. For this class of maps we prove {\it a priori} bounds. They imply local connectivity of the corresponding Julia sets and the Mandelbrot set at the corresponding parameter values. Comment: LaTeX, 29 pages, 2 figures

Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
197,173 Research products, page 1 of 19,718
  • Closed Access
    Authors: 
    John Paul Archambault;
    Publisher: Elsevier BV
    Country: Canada

    Abstract A simple geometry is used to compare several of the available Monte Carlo software codes for radiation transport. EGSnrc, Geant4 and MCNP5 are all used to calculate the photon fluence produced from electrons incident on a copper target. Four energies for the isotropic point source are chosen to simulate the average and maximum emission energies of 32 P and 90 Y: (0.7, 1.71) MeV and (0.93, 2.28) MeV, respectively. The energy deposition in the copper target, the electron current at the target and the computational efficiency are also calculated. EGSnrc is found to be the only self-consistent code when comparing results calculated using the default transport parameters of the condensed history mode with those calculated in the single scattering mode.

  • Closed Access
    Authors: 
    Niels Van Steenkiste; Kevin C. Wakeman; Brian S. Leander;
    Publisher: Elsevier BV
    Project: NSERC

    Abstract Marine gastrotrichs of the Pacific Ocean are poorly known. Here, we report on the finding of a marine chaetonotid gastrotrich of the genus Diuronotus from an intertidal beach within the Sea of Japan in Hokkaido (Japan). The Japanese individual shows a very close resemblance to Diuronotus aspetos. This new record is a consequential extension of its biogeographic range; previous records for representatives of this genus are confined to West Greenland, the North Sea and the east coast of North America. This rarely encountered, but seemingly widespread genus of marine gastrotrichs exemplifies our limited understanding of meiofaunal diversity and distribution patterns caused by sampling bias and insufficient knowledge on nominal species complexes.

  • Open Access
    Authors: 
    Jinluo Cheng; Julien Rioux; John E. Sipe;
    Publisher: American Physical Society (APS)
    Project: NSERC

    Using an empirical pseudopotential description of electron states and an adiabatic bond charge model for phonon states in bulk silicon, we theoretically investigate two-photon indirect optical injection of carriers and spins and two-color coherent control of the motion of the injected carriers and spins. For two-photon indirect carrier and spin injection, we identify the selection rules of band edge transitions, the injection in each conduction band valley, and the injection from each phonon branch at 4 K and 300 K. At 4 K, the TA phonon-assisted transitions dominate the injection at low photon energies, and the TO phonon-assisted at high photon energies. At 300 K, the former dominates at all photon energies of interest. The carrier injection shows anisotropy and linear-circular dichroism with respect to light propagation direction. For light propagating along the $<001>$ direction, the carrier injection exhibits valley anisotropy, and the injection into the $Z$ conduction band valley is larger than that into the $X/Y$ valleys. For $��^-$ light propagating along the $<001>$ ($<111>$) direction, the degree of spin polarization gives a maximum value about 20% (6%) at 4 K and -10% (20%) at 300 K, and at both temperature shows abundant structure near the injection edges due to contributions from different phonon branches. Forthe two-color coherent current injection with an incident optical field composed of a fundamental frequency and its second harmonic, the response tensors of the electron (hole) charge and spin currents are calculated at 4 K and 300 K. We show the current control for three different polarization scenarios. The spectral dependence of the maximum swarm velocity shows that the direction of charge current reverses under increase in photon energy. 15 pages and 14 figures

  • Open Access
    Authors: 
    James O'Sullivan; Oliver Lunt; Christoph W. Zollitsch; M. L. W. Thewalt; John J. L. Morton; Arijeet Pal;
    Publisher: IOP Publishing
    Project: UKRI | EPSRC Centre for Doctoral... (EP/L015242/1), EC | LOQO-MOTIONS (771493), EC | Corr-NEQM (853368)

    Abstract Discrete time-translational symmetry in a periodically driven many-body system can be spontaneously broken to form a discrete time crystal, an exotic new phase of matter. We present observations characteristic of discrete time crystalline order in a driven system of paramagnetic P-donor impurities in isotopically enriched 28Si cooled below 10 K. The observations exhibit a stable subharmonic peak at half the drive frequency which remains pinned even in the presence of pulse error, a signature of discrete time crystalline order. This signal has a finite lifetime of ∼100 Floquet periods, but this effect is long-lived relative to coherent spin–spin interaction timescales, lasting ∼104 times longer. We present simulations of the system based on the paradigmatic central spin model and show good agreement with experiment. We investigate the role of dissipation and interactions within this model, and show that both are capable of giving rise to discrete time crystal-like behaviour.

  • Open Access English
    Authors: 
    F.L. Schaafsma; Carmen David; Evgeny A. Pakhomov; Brian P. V. Hunt; Benjamin Lange; Hauke Flores; J.A. van Franeker;
    Country: Netherlands
    Project: NWO | The imperiled role of sea... (10533)

    The condition and survival of Antarctic krill (Euphausia superba) strongly depends on sea ice conditions during winter. How krill utilize sea ice depends on several factors such as region and developmental stage. A comprehensive understanding of sea ice habitat use by krill, however, remains largely unknown. The aim of this study was to improve the understanding of the krill’s interaction with the sea ice habitat during winter/early spring by conducting large-scale sampling of the ice–water interface (0–2 m) and comparing the size and developmental stage composition of krill with the pelagic population (0–500 m). Results show that the population in the northern Weddell Sea consisted mainly of krill that were <1 year old (age class 0; AC0), and that it was comprised of multiple cohorts. Size per developmental stage differed spatially, indicating that the krill likely were advected from various origins. The size distribution of krill differed between the two depth strata sampled. Larval stages with a relatively small size (mean 7–8 mm) dominated the upper two metre layer of the water column, while larger larvae and AC0 juveniles (mean 14–15 mm) were proportionally more abundant in the 0- to 500-m stratum. Our results show that, as krill mature, their vertical distribution and utilization of the sea ice appear to change gradually. This could be the result of changes in physiology and/or behaviour, as, e.g., the krill’s energy demand and swimming capacity increase with size and age. The degree of sea ice association will have an effect on large-scale spatial distribution patterns of AC0 krill and on predictions of the consequences of sea ice decline on their survival over winter.

  • Open Access English
    Authors: 
    Kedong Yin; Hao Liu; Paul Harrison;
    Publisher: Copernicus Publications
    Project: NSERC

    We hypothesize that phytoplankton have the sequential nutrient uptake strategy to maintain nutrient stoichiometry and high primary productivity in the water column. According to this hypothesis, phytoplankton take up the most limiting nutrient first until depletion, continue to draw down non-limiting nutrients and then take up the most limiting nutrient rapidly when it is available. These processes would result in the variation of ambient nutrient ratios in the water column around the Redfield ratio. We used high-resolution continuous vertical profiles of nutrients, nutrient ratios and on-board ship incubation experiments to test this hypothesis in the Strait of Georgia. At the surface in summer, ambient NO3− was depleted with excess PO43− and SiO4− remaining, and as a result, both N : P and N : Si ratios were low. The two ratios increased to about 10 : 1 and 0. 45 : 1, respectively, at 20 m. Time series of vertical profiles showed that the leftover PO43− continued to be removed, resulting in additional phosphorus storage by phytoplankton. The N : P ratios at the nutricline in vertical profiles responded differently to mixing events. Field incubation of seawater samples also demonstrated the sequential uptake of NO3− (the most limiting nutrient) and then PO43− and SiO4− (the non-limiting nutrients). This sequential uptake strategy allows phytoplankton to acquire additional cellular phosphorus and silicon when they are available and wait for nitrogen to become available through frequent mixing of NO3− (or pulsed regenerated NH4). Thus, phytoplankton are able to maintain high productivity and balance nutrient stoichiometry by taking advantage of vigorous mixing regimes with the capacity of the stoichiometric plasticity. To our knowledge, this is the first study to show the in situ dynamics of continuous vertical profiles of N : P and N : Si ratios, which can provide insight into the in situ dynamics of nutrient stoichiometry in the water column and the inference of the transient status of phytoplankton nutrient stoichiometry in the coastal ocean.

  • Closed Access
    Authors: 
    Nancy I. Lewis; Jennifer L. Wolny; John C. Achenbach; Lee D. Ellis; Joseph S Pitula; Cheryl Rafuse; Detbra S. Rosales; Pearse McCarron;
    Country: Canada

    Abstract Benthic dinoflagellates of the toxigenic genus Coolia Meunier (Dinophyceae) are known to have a global distribution in both tropical and temperate waters. The type species, C. monotis, has been reported from the Mediterranean Sea, the NE Atlantic and from Rhode Island, USA in the NW Atlantic, whereas other species in the genus have been reported from tropical locations. Coolia cells were observed in algal drift samples collected at seven sites in Nova Scotia, Canada. Clonal isolates were established from four of these locations and identified with light and scanning electron microscopy, then confirmed with genetic sequencing to be C. monotis . This is the first record of this species in Nova Scotia. The isolates were established and incubated at 18 °C under a 14:10 L:D photoperiod with an approximate photon flux density of 50–60 μmol m −2 s −1 . Growth experiments using an isolate from Johnston Harbour (CMJH) were carried out at temperatures ranging from 5 to 30 °C under the same photoperiod with an approximate photon flux density of 45–50 μmol m −2 s −1 . Cells tolerated temperatures from 5 to 25 °C with optimum growth and mucilage aggregate production between 15 and 20 °C. Methanol extracts of this isolate examined by Liquid Chromatography-Mass Spectrometry (LC–MS) did not show the presence of the previously reported cooliatoxin. Toxic effects were assayed using two zebrafish bioassays, the Fish Embryo Toxicity (FET) assay and the General Behaviour and Toxicity (GBT) assay. The results of this study demonstrate a lack of toxicity in C. monotis from Nova Scotia, as has been reported for other genetically-confirmed isolates of this species. Conditions in which cell growth that could potentially degrade water quality and provide substrate and dispersal mechanisms for other harmful microorganisms via mucilage production are indicated.

  • Authors: 
    Masen Lamb; Andrew Norton; Bruce Macintosh; Carlos Correia; Jean-Pierre Véran; Christian Marois; Suresh Sivanandam;
    Publisher: SPIE

    We explore the application of phase diversity to calibrate the non common path aberrations (NCPA) in the Gemini Planet Imager (GPI). This is first investigated in simulation in order to characterize the ideal technique parameters with simulated GPI calibration source data. The best working simulation parameters are derived and we establish the algorithm's capability to recover an injected astigmatism. Furthermore, the real data appear to exhibit signs of de-centering between the in and out of focus images that are required by phase diversity; this effect can arise when the diverse images are acquired in closed loop and are close to the non-linear regime of the wavefront sensor. We show in simulation that this effect can inhibit our algorithm, which does not take into account the impact of de-centering between images. To mitigate this effect, we validate the technique of using a single diverse image with our algorithm; this is first demonstrated in simulation and then applied to the real GPI data. Following this approach, we find that we can successfully recover a known astigmatism injection using the real GPI data and subsequently apply an NCPA correction to GPI (in the format of offset reference slopes) to improve the relative Strehl ratio by 5%; we note this NCPA correction application is rudimentary and a more thorough application will be investigated in the near future. Finally, the estimated NCPA in the form of astigmatism and coma agree well with the magnitude of the same modes reported by Poyneer et al. 2016.

  • Closed Access
    Authors: 
    Qiulu Chu; Kai Song; Jing Wang; Jinguang Hu; Xueyan Chen;
    Publisher: Elsevier BV

    Abstract In this work, the beneficial effect of carbocation scavenger additives on hardwood pretreatment was revealed by significantly improved biomass saccharification: cellulose hydrolysis yield was increased by over 15% after steam pretreatment of poplar, while that was enhanced by more than 48% after dilute acid pretreatment. Besides, the relative contributions of lignin towards enzyme binding and physical barrier effect for proposed mechanisms were quantified. Results indicated that the addition of carbocation scavenger, 2-naphthol-7-sulfonate, resulted in acid groups incorporation of 62.36 mmol/kg to lignin, which mitigated enzyme non-productive binding. Moreover, enlarged biomass porosity and reduced surface lignin coverage were detected through BET and XPS analysis, respectively, which mostly related to the diminished physical barrier effect of lignin. As a result, the lignin inhibitions were significantly suppressed through the addition of carbocation scavenger, giving rise to significantly improved enzymatic hydrolysis of hardwood.

  • Open Access
    Authors: 
    Jeremy Kahn; Mikhail Lyubich;
    Publisher: Societe Mathematique de France
    Project: NSERC

    A decoration of the Mandelbrot set $M$ is a part of $M$ cut off by two external rays landing at some tip of a satellite copy of $M$ attached to the main cardioid. In this paper we consider infinitely renormalizable quadratic polynomials satisfying the decoration condition, which means that the combinatorics of the renormalization operators involved is selected from a finite family of decorations. For this class of maps we prove {\it a priori} bounds. They imply local connectivity of the corresponding Julia sets and the Mandelbrot set at the corresponding parameter values. Comment: LaTeX, 29 pages, 2 figures