Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products, page 1 of 1

  • Canada
  • Research data
  • Other dataset type
  • European Commission
  • Natural Sciences and Engineering Research Council of Canada
  • EC|H2020

Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Callbeck, Cameron; Lavik, Gaute; Ferdelman, Timothy G; Kuypers, Marcel MM;
    Publisher: PANGAEA
    Project: NSERC , EC | NITROX (704272)

    Supplement to: Callbeck, Cameron; Lavik, Gaute; Ferdelman, Timothy G; Fuchs, Bernhard M; Gruber-Vodicka, Harald R; Hach, Philipp F; Littmann, Sten; Schoffelen, Niels J; Kalvelage, Tim; Thomsen, Soeren; Schunck, Harald; Löscher, Carolin R; Schmitz, Ruth A; Kuypers, Marcel MM (2018): Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. The data set includes, sulfide and sulfur concentrations, SUP05 cell densities, as well as denitrification and carbon fixation rates (based on 15N- and 13C-labelled in situ incubation experiments). The transect extends from the sulfidic upper shelf into the sulfide-free offshore oxygen minimum zone.

  • Open Access English
    Authors: 
    Gibbin, Emma M; Chakravarti, Leela Jackie; Jarrold, Michael; Christen, Felix; Turpin, Vincent; Massamba-N'siala, Gloria; Blier, Pierre; Calosi, Piero;
    Publisher: PANGAEA
    Project: NSERC , EC | EVOLMARIN (659359)

    Ocean warming and acidification are concomitant global drivers that are currently threatening the survival of marine organisms. How species will respond to these changes depends on their capacity for plastic and adaptive responses. Little is known about the mechanisms that govern plasticity and adaptability or how global changes will influence these relationships across multiple generations. Here, we exposed the emerging model marine polychaete Ophryotrocha labronica to conditions simulating ocean warming and acidification, in isolation and in combination over five generations to identify: (i) how multiple versus single global change drivers alter both juvenile and adult life-traits; (ii) the mechanistic link between adult physiological and fitness-related life-history traits; (iii) whether observed phenotypic changes observed over multiple generations are of plastic and/or adaptive origin. Two juvenile (developmental rate; survival to sexual maturity) and two adult (average reproductive body size; fecundity) life-history traits were measured in each generation, in addition to three physiological (cellular reactive oxygen species content, mitochondrial density; mitochondrial capacity) traits. We found that multi-generational exposure to warming alone caused an increase in: juvenile developmental rate, reactive oxygen species production and mitochondrial density and decreases in: average reproductive body size, fecundity and fluctuations in mitochondrial capacity, relative to control conditions. While exposure to ocean acidification alone, had only minor effects on juvenile developmental rate. Remarkably, when both drivers of global change were present, only mitochondrial capacity was significantly affected, suggesting that ocean warming and acidification act as opposing vectors of stress across multiple generations. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-11-29. Supplement to: Gibbin, Emma M; Chakravarti, Leela Jackie; Jarrold, Michael; Christen, Felix; Turpin, Vincent; Massamba-N'siala, Gloria; Blier, Pierre; Calosi, Piero (2017): Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? Journal of Experimental Biology, 220(4), 551-563

  • Open Access English
    Authors: 
    Chakravarti, Leela Jackie; Jarrold, Michael; Gibbin, Emma M; Christen, Felix; Massamba-N'siala, Gloria; Blier, Pierre; Calosi, Piero;
    Publisher: PANGAEA
    Project: NSERC , EC | EVOLMARIN (659359)

    Human-assisted, trans-generational exposure to ocean warming and acidification has been proposed as a conservation and/or restoration tool to produce resilient offspring. To improve our understanding of the need for and the efficacy of this approach, we characterised life history and physiological responses in offspring of the marine polychaete Ophryotrocha labronica exposed to predicted ocean warming (OW: + 3 °C), ocean acidification (OA: pH -0.5) and their combination (OWA: + 3 °C, pH -0.5), following the exposure of their parents to either control conditions (within-generational exposure) or the same conditions (trans-generational exposure). Trans-generational exposure to OW fully alleviated the negative effects of within-generational exposure to OW on fecundity and egg volume and was accompanied by increased metabolic activity. While within-generational exposure to OA reduced juvenile growth rates and egg volume, trans-generational exposure alleviated the former but could not restore the latter. Surprisingly, exposure to OWA had no negative impacts within- or trans-generationally. Our results highlight the potential for trans-generational laboratory experiments in producing offspring that are resilient to OW and OA. However, trans-generational exposure does not always appear to improve traits, and therefore may not be a universally useful tool for all species in the face of global change. Supplement to: (2016): Can trans-generational experiments be used to enhance species resilience to ocean warming and acidification? Evolutionary Applications

  • Open Access English
    Authors: 
    Couture, Nicole; Irrgang, Anna Maria; Pollard, Wayne H; Lantuit, Hugues; Fritz, Michael;
    Publisher: PANGAEA
    Project: NSERC , EC | Nunataryuk (773421)

    Narrowing uncertainties about carbon cycling is important in the Arctic where rapid environmental changes contribute to enhanced mobilization of carbon. Here we quantify soil organic carbon (SOC) contents of permafrost soils along the Yukon Coastal Plain and determine the annual fluxes from erosion. Different terrain units are assessed based on surficial geology, morphology, and ground ice conditions. To account for the volume of wedge ice and massive ice in a unit, sample SOC contents are reduced by 19% and sediment contents by 16%. The SOC content in a 1 m**2 column of soil varies according to the height of the bluff, ranging from 30 to 662 kg, with a mean value of 183 kg. Forty-four per cent of the SOC is within the top 1 m of soil and values vary based on surficial materials, ranging from 30 to 53 kg C/m**3, with a mean of 41 kg. Eighty per cent of the shoreline is erosive with a mean annual rate of change is 0.7 m/a. This results in a SOC flux per meter of shoreline of 131 kg C/m/a, and a total flux for the entire Yukon coast of 35.5 10**6 kg C/a (0.036 Tg C/a). The mean flux of sediment per meter of shoreline is 5.3 10**3 kg/m/a, with a total flux of 1,832.0 10**6 kg/a (1.832 Tg/a). Sedimentation rates indicate that approximately 13% of the eroded carbon is sequestered in nearshore sediments, where the overwhelming majority of organic carbon is of terrestrial origin. Supplement to: Couture, Nicole; Irrgang, Anna Maria; Pollard, Wayne H; Lantuit, Hugues; Fritz, Michael (2018): Coastal Erosion of Permafrost Soils Along the Yukon Coastal Plain and Fluxes of Organic Carbon to the Canadian Beaufort Sea. Journal of Geophysical Research: Biogeosciences

Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products, page 1 of 1
  • Open Access English
    Authors: 
    Callbeck, Cameron; Lavik, Gaute; Ferdelman, Timothy G; Kuypers, Marcel MM;
    Publisher: PANGAEA
    Project: NSERC , EC | NITROX (704272)

    Supplement to: Callbeck, Cameron; Lavik, Gaute; Ferdelman, Timothy G; Fuchs, Bernhard M; Gruber-Vodicka, Harald R; Hach, Philipp F; Littmann, Sten; Schoffelen, Niels J; Kalvelage, Tim; Thomsen, Soeren; Schunck, Harald; Löscher, Carolin R; Schmitz, Ruth A; Kuypers, Marcel MM (2018): Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. The data set includes, sulfide and sulfur concentrations, SUP05 cell densities, as well as denitrification and carbon fixation rates (based on 15N- and 13C-labelled in situ incubation experiments). The transect extends from the sulfidic upper shelf into the sulfide-free offshore oxygen minimum zone.

  • Open Access English
    Authors: 
    Gibbin, Emma M; Chakravarti, Leela Jackie; Jarrold, Michael; Christen, Felix; Turpin, Vincent; Massamba-N'siala, Gloria; Blier, Pierre; Calosi, Piero;
    Publisher: PANGAEA
    Project: NSERC , EC | EVOLMARIN (659359)

    Ocean warming and acidification are concomitant global drivers that are currently threatening the survival of marine organisms. How species will respond to these changes depends on their capacity for plastic and adaptive responses. Little is known about the mechanisms that govern plasticity and adaptability or how global changes will influence these relationships across multiple generations. Here, we exposed the emerging model marine polychaete Ophryotrocha labronica to conditions simulating ocean warming and acidification, in isolation and in combination over five generations to identify: (i) how multiple versus single global change drivers alter both juvenile and adult life-traits; (ii) the mechanistic link between adult physiological and fitness-related life-history traits; (iii) whether observed phenotypic changes observed over multiple generations are of plastic and/or adaptive origin. Two juvenile (developmental rate; survival to sexual maturity) and two adult (average reproductive body size; fecundity) life-history traits were measured in each generation, in addition to three physiological (cellular reactive oxygen species content, mitochondrial density; mitochondrial capacity) traits. We found that multi-generational exposure to warming alone caused an increase in: juvenile developmental rate, reactive oxygen species production and mitochondrial density and decreases in: average reproductive body size, fecundity and fluctuations in mitochondrial capacity, relative to control conditions. While exposure to ocean acidification alone, had only minor effects on juvenile developmental rate. Remarkably, when both drivers of global change were present, only mitochondrial capacity was significantly affected, suggesting that ocean warming and acidification act as opposing vectors of stress across multiple generations. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-11-29. Supplement to: Gibbin, Emma M; Chakravarti, Leela Jackie; Jarrold, Michael; Christen, Felix; Turpin, Vincent; Massamba-N'siala, Gloria; Blier, Pierre; Calosi, Piero (2017): Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? Journal of Experimental Biology, 220(4), 551-563

  • Open Access English
    Authors: 
    Chakravarti, Leela Jackie; Jarrold, Michael; Gibbin, Emma M; Christen, Felix; Massamba-N'siala, Gloria; Blier, Pierre; Calosi, Piero;
    Publisher: PANGAEA
    Project: NSERC , EC | EVOLMARIN (659359)

    Human-assisted, trans-generational exposure to ocean warming and acidification has been proposed as a conservation and/or restoration tool to produce resilient offspring. To improve our understanding of the need for and the efficacy of this approach, we characterised life history and physiological responses in offspring of the marine polychaete Ophryotrocha labronica exposed to predicted ocean warming (OW: + 3 °C), ocean acidification (OA: pH -0.5) and their combination (OWA: + 3 °C, pH -0.5), following the exposure of their parents to either control conditions (within-generational exposure) or the same conditions (trans-generational exposure). Trans-generational exposure to OW fully alleviated the negative effects of within-generational exposure to OW on fecundity and egg volume and was accompanied by increased metabolic activity. While within-generational exposure to OA reduced juvenile growth rates and egg volume, trans-generational exposure alleviated the former but could not restore the latter. Surprisingly, exposure to OWA had no negative impacts within- or trans-generationally. Our results highlight the potential for trans-generational laboratory experiments in producing offspring that are resilient to OW and OA. However, trans-generational exposure does not always appear to improve traits, and therefore may not be a universally useful tool for all species in the face of global change. Supplement to: (2016): Can trans-generational experiments be used to enhance species resilience to ocean warming and acidification? Evolutionary Applications

  • Open Access English
    Authors: 
    Couture, Nicole; Irrgang, Anna Maria; Pollard, Wayne H; Lantuit, Hugues; Fritz, Michael;
    Publisher: PANGAEA
    Project: NSERC , EC | Nunataryuk (773421)

    Narrowing uncertainties about carbon cycling is important in the Arctic where rapid environmental changes contribute to enhanced mobilization of carbon. Here we quantify soil organic carbon (SOC) contents of permafrost soils along the Yukon Coastal Plain and determine the annual fluxes from erosion. Different terrain units are assessed based on surficial geology, morphology, and ground ice conditions. To account for the volume of wedge ice and massive ice in a unit, sample SOC contents are reduced by 19% and sediment contents by 16%. The SOC content in a 1 m**2 column of soil varies according to the height of the bluff, ranging from 30 to 662 kg, with a mean value of 183 kg. Forty-four per cent of the SOC is within the top 1 m of soil and values vary based on surficial materials, ranging from 30 to 53 kg C/m**3, with a mean of 41 kg. Eighty per cent of the shoreline is erosive with a mean annual rate of change is 0.7 m/a. This results in a SOC flux per meter of shoreline of 131 kg C/m/a, and a total flux for the entire Yukon coast of 35.5 10**6 kg C/a (0.036 Tg C/a). The mean flux of sediment per meter of shoreline is 5.3 10**3 kg/m/a, with a total flux of 1,832.0 10**6 kg/a (1.832 Tg/a). Sedimentation rates indicate that approximately 13% of the eroded carbon is sequestered in nearshore sediments, where the overwhelming majority of organic carbon is of terrestrial origin. Supplement to: Couture, Nicole; Irrgang, Anna Maria; Pollard, Wayne H; Lantuit, Hugues; Fritz, Michael (2018): Coastal Erosion of Permafrost Soils Along the Yukon Coastal Plain and Fluxes of Organic Carbon to the Canadian Beaufort Sea. Journal of Geophysical Research: Biogeosciences