Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
184 Research products

  • Canada
  • Publications
  • Research data
  • 2019-2023
  • Thesis
  • FR
  • NL

10
arrow_drop_down
Relevance
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Cong, Binghao;

    The primary objective of this thesis is to improve optical setups of a constant volume combustion chamber to better understand the vaporization and spray characteristics of various fuels. The schlieren imaging technique is utilized to visualize phenomena that are challenging to observe directly. In this thesis, the schlieren imaging is used to observe the spray and ignition characteristics of DME and diesel fuels under high injection pressure. First, various optical techniques are discussed and compared under the same test condition including schlieren, shadowgraph, and direct imaging. The advantages for these techniques are presented and the most appropriate technique for different testing scenarios is proposed. Second, the spray and ignition characteristics of DME and diesel are compared. The inert spray for both fuels are observed and compared using schlieren imaging technique. The reactive spray for both fuels are observed and compared using direct imaging and shadowgraph imaging system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scholarship at UWindsor
    Thesis . 2023
    License: CC BY
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scholarship at UWindsor
      Thesis . 2023
      License: CC BY
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Alexander, Nicolle;

    More than two decades after its introduction, neoliberal ideology has increasingly created a class and race-based gap in relation to student achievement in Ontario’s education system. Due to market-based rhetoric shaping policies and legislation, schools are increasingly encouraging students to adhere to the demands of a newly globalized world with a focus on the economy, regardless of their background. This study aims to analyze the presence of neoliberal reforms in Ontario’s education system through decisions made in government from Mike Harris’ in 1995 to the present Doug Ford administration. Specifically, I investigate how the so-called knowledge economy has produced a system that enables students deemed marketable, often from middle- and upper-class white backgrounds, and disables non-marketable students, most often the working poor and the working class, and racial and ethnic minorities, through funding cuts, heightened accountability, and standardized testing. By evaluating Ministry of Education policy documents and documents for both Conservative Premier campaigns, I analyzed the rhetoric used to introduce, consolidate and solidify neoliberal discourse throughout the past twenty years. The results showed that by simplifying education to quantifiable measures, the education system now measures concepts such as equity and inclusion in schools through standardized testing and monthly reports. Further, the rhetoric used to solidify equity and inclusion within the system focuses more on the presentation of both rather than materializing its action in schools. In order to minimize the current student achievement gap in our education system, funding needs to be focalized in social services cut by our government level to properly re“instate” the intended actions of these policies.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rana, Shivang;

    The rarity of Melanoma skin cancer accounts for the dataset collected to be limited and highly skewed, as benign moles can easily mimic the impression of the melanoma-affected area. Such an imbalanced dataset makes training any deep learning classifier network harder by affecting the training stability. We have an intuition that synthesizing such skin lesion medical images could help solve the issue of overfitting in training networks and assist in enforcing the anonymization of actual patients. Despite multiple previous attempts, none of the models were practical for the fast-paced clinical environment. In this thesis, we propose a novel pipeline named SkinCAN AI, inspired by StyleGAN but designed explicitly considering the limitations of the skin lesion dataset and emphasizing the requirement of a faster optimized diagnostic tool that can be easily inferred and integrated into the clinical environment. Our SkinCAN AI model is equipped with its module of adaptive discriminator augmentation that enables limited target data distribution to be learned and artificial data points to be sampled, which further assist the classifier network in learning semantic features. We elucidate the novelty of our SkinCAN AI pipeline by integrating the soft attention module in the classifier network. This module yields an attention mask analyzed by DenseNet201 to focus on learning relevant semantic features from skin lesion images without using any heavy computational burden of artifact removal software. The SkinGAN model achieves an FID score of 0.622 while allowing its synthetic samples to train the DenseNet201 model with an accuracy of 0.9494, AUC of 0.938, specificity of 0.969, and sensitivity of 0.695. We provide evidence in our thesis that our proposed pipelines outperform other state-of-the-art existing networks developed for this task of early diagnosis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scholarship at UWindsor
    Thesis . 2022
    License: CC BY
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scholarship at UWindsor
      Thesis . 2022
      License: CC BY
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Edrisy, Mohamed;

    The emergence of commercial FEA solvers was a significant breakthrough that boosted the accuracy and complexity of engineering design. While composite materials are special materials, their mechanical properties can be custom made by considering the needs and requirements of the design problem. Given the rapidly expanding global consumption of composite materials, access to FEA solvers capable of assigning these materials is an absolute requirement.The CATIA software is a platform for designing, analyzing, and manufacturing of parts. However, there is no meaningful documentation in the public domain exploring the finite element functionalities of CATIA software for composite materials. Isotropic materials are used in numerous references investigating the CATIA FEA solver; however, the extension to composite materials has been lacking. The present study investigates two phenomena: (1) the procedure to import composite material properties into the Generative Structural Analysis workbench, and (2) the pre-processing and the post-processing toolbars and functionalities pertaining to this matter. The thesis does not address the CAD modelling aspects of the composites per se since there are many references available concentrating on such issues in the CATIA public literature.The composite models are selected from different scenarios labeled as benchmark problems. The results generated by CATIA’s native FEA solver for the static, dynamic, and buckling cases are compared with other tools available to the engineering community. These tools encompass the Classical Lamination Theory and two commercial CAE codes, known as ABAQUS and ANSYS.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stone, Rachel Marie;

    Monitoring intracranial pressure (ICP) has become an important practice in patients with elevated ICP (e.g., traumatic brain injury) to improve patient outcome. However, little information exists surrounding chronic, but sub-clinical elevations in ICP, which may stem from classic cardiovascular risk factors, such as elevated blood pressure (BP). The current methods to assess ICP are invasive and costly; but optic nerve sheath diameter (ONSD) and blood flow pulsatility (pulsatility index; PI) are promising non-invasive techniques, both of which have been reported to strongly correlate with invasive measures of ICP in pathology. However, the interactions of BP, ONSD and PI in otherwise healthy adults, remains undetermined. Accordingly, the purpose of this investigation was to determine the relationship between ONSD, PI and BP, and to highlight possible sex differences in a population of young healthy adults. Sixteen participants (6 females) underwent assessment of arterial BP, ONSD (left and right eyes) and PI (left common carotid artery) using ultrasound. There was a strong correlation between mean ONSD (left and right eye combined) and PI (R=0.735, p=0.001). There was no significant relationship between PI and BP (R=0.058, p=0.832) or ONSD and BP (R=0.272, p=0.309). Additionally, there was a significant difference between males and females for mean ONSD, whereby males demonstrated a larger diameter (males=0.4860.110 vs. females=0.3530.062cm; p=0.018), but there was no significant difference in PI between males and females (males=2.3630.613 vs. females=1.9500.196; p=0.136). Results of this study confirm the relationship between ONSD and PI in a healthy population. While ICP was not directly assessed in the current study, the strong associations between ONSD and PI suggest that their combined assessment may be employed as a tenable surrogate to non-invasively measure ICP when the invasive measure of ICP is unfeasible.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scholarship at UWindsor
    Thesis . 2022
    License: CC BY
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scholarship at UWindsor
      Thesis . 2022
      License: CC BY
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhai, Yuanyuan;

    A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Systems Engineering, University of Regina. xvii, 185 p. Temperature extremes are among the most studied features in the climate research community using both the observed datasets and the simulated outputs from climate models. Such extremes often lead to irreversible societal, ecological, and economic consequences across the globe. Moreover, projected results from climate models have also indicated that changes in future temperature-related extremes will become more frequent and intense with global warming. Therefore, comprehensive knowledge of long-term changes in the observed temperature extremes cannot only help to detect, attribute, and project climate change but can also enhance the development of effective mitigation and adaptation strategies (at regional or site-specific scales) towards the management of catastrophe caused by the extremes. In this dissertation, the observed spatial and temporal variations in temperature extremes are first analyzed at a hemispheric scale based on the newly developed HadEX3 dataset; the impact of large-scale atmospheric circulation patterns on dynamic changes in temperature extremes has also been examined. Then, future changes in extreme temperature variables at a much smaller scale (e.g., local scale) are investigated through a stepwise clustered downscaling method. Based on the downscaled results, future changes in the properties of moderate and severe heatwave conditions are further analyzed. Comparisons of the projected temperature variables and future heatwaves among different climate models provide valuable information on the ability of the models in simulating the long-term variations of temperature extremes. This research can be used to provide a scientific basis and valuable information to prepare for future changes in extreme heat conditions and mitigate the negative impacts of temperature-related extremes on society and the environment. Student yes

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ oURspacearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    oURspace
    Thesis . 2022
    Data sources: oURspace
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ oURspacearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      oURspace
      Thesis . 2022
      Data sources: oURspace
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Knorr, Savannah;

    Southwestern Ontario is dominated by agricultural lands that are extensively tile drained throughout the region as a management practice to remove excess water from fields. While tile drainage is a common practice, the implementation of constructed preferential flow paths, along with surface runoff from agricultural lands, increases nutrient loading risks to connected and downstream environments, and receiving large lakes. Of particular concern in this region is Lake Erie which has a legacy of severely degraded water quality due to excess nutrient loading from agricultural lands within the lake’s drainage basin. While agricultural lands are a known source for nutrient loading, there is a lack of understanding on the role of microbial functional communities in environments connected to these lands, and how they respond to both nutrient inputs and agricultural management practices. This thesis investigates how sustained agricultural management practices alter microbial nutrient cycling communities in receiving aquatic and sediment environments, and the temporal patterns in both nutrient loading and microbial nutrient cycling communities. Results indicate that fertilization practices and agricultural management practices (e.g. tillage), increase nutrient loads to receiving environments. Nitrogen fertilization in particular drives patterns in nitrogen and phosphorus limited conditions in receiving aquatic environments, and phosphorus limited conditions of both aquatic and sediment environments determines patterns in phosphorus mobilization potentials. Finally, nutrient loads and microbial nutrient cycling capacity in aquatic environments increase during precipitation events and in the non-growing season, but decline significantly with increasing distance from agricultural sources and through areas of natural filtration. In contrast sediment environments are more resilient to agricultural inputs and abiotic factors. This research provides insight into temporal patterns of nutrient loading and how nutrient cycling microbial communities respond in receiving aquatic and sediment environments in agriculturally dominated locations of the southwestern Ontario region.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scholarship at UWindsor
    Thesis . 2023
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scholarship at UWindsor
    Thesis . 2023
    License: CC BY
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scholarship at UWindsor
      Thesis . 2023
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scholarship at UWindsor
      Thesis . 2023
      License: CC BY
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kitchen, Arin Thomas;

    A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements for the Degree of Master of Science in Geology, University of Regina. ix, * 216. Saskatchewan is home to world-class uranium (U) deposits associated with the unconformity between the Proterozoic Athabasca Basin and underlying Archean- Paleoproterozoic basement rocks. Many deposits exhibit a strong spatial association with post-Athabasca faults formed by the reactivation of basement-rooted structures. Deformation bands are products of localized strain in porous sedimentary rocks and are commonly associated with fault damage zones. They can significantly modify porosity due to grain rotation and granular flow. This study investigated deformation bands in sandstones of the basal Manitou Falls Group in eight drillhole fences that transect two fault corridors in the eastern Athabasca Basin: the NNE-trending C1 fault corridor that hosts the Gryphon deposit, and the WS shear zone, a splay of the former that hosts the Phoenix deposit. The deformation bands in the sandstone correspond to mainly shearenhanced compaction bands that increase in abundance toward post-Athabasca faults. The proportion of bands with visible signs of cataclasis increases with depth. Petrographic study places band formation relatively early in the host-rock paragenetic sequence, before introduction of drusy quartz veins and tourmaline associated with U mineralization. Paleo-stress analysis performed using basement- and sandstone-hosted structural orientation data identified two major stress regimes associated with each fault corridor. The first stress regime (A) groups strike-slip (cover) and thrust (cover and basement) solutions at both localities wherein the principal stress (σ1) lies in the horizontal plane roughly perpendicular to the fault; while the second regime (B) groups additional data, with the derived σ1 (~E–W) lying near-parallel to faults. Based on collective macroscopic to microscopic observations, deformation bands are inferred to have formed after Manitou Falls deposition in successive homogeneous stress regimes. It is contended that the bands initially formed in a strike-slip regime (A), characterized by subhorizontal NW–SE-trending σ1 that promoted reverse reactivation of moderately ESEdipping basement-rooted faults. A younger set of thrust-sense bands may have facilitated fault propagation through the sandstone cover, and potentially records the evolution of A to a fully contractional i.e., thrust regime. Most deformation bands thus appear to have formed early, under regional compression that preceded and accompanied basement fault reactivation that led to offset of the unconformity and influx of uraniferous fluids. The second regime (B, σ1 E–W) may mark younger sinistral strike-slip motion (basement and cover) which influenced the development of NW–SE transverse faults. The nature and timing of the bands in this study is compatible with the shallow basin model (<3 km) of uranium ore genesis. Student yes

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ oURspacearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    oURspace
    Thesis . 2022
    Data sources: oURspace
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ oURspacearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      oURspace
      Thesis . 2022
      Data sources: oURspace
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rogers, Joel;

    Natural evolution has yielded small molecules and macromolecules with a diverse array of activities, many of which have been harnessed by human society to advance industry and medicine. However, evolution is primarily selective for survival of the organism and/or gene rather than any particular activity directly, and is largely constrained by its cellular environment — interference or negative interactions (such as precipitation or cytotoxicity) between the cell and effector (the RNA or protein product) will generally act as a counter-selective pressure for that effector. Evolution also lacks foresight. In fact, evolution’s main advantage over human efforts to develop novel drugs or catalysts seems to be the sheer number of molecules that it has been able to sample over the past ~3.5 billion years — as well as the fact that the cell is a relatively robust and efficient core platform on which to build. Ultrahigh-throughput screening offers researchers a powerful tool to begin sampling larger regions of sequence space, and thus partially addresses one of evolution’s main advantages. This approach has particularly grown in promise and scale as DNA sequencing has become faster, cheaper and more accurate in recent years, greatly facilitating identification of macromolecular — and in some cases, small molecule — library members. Combining the ability to screen large libraries with a clear concept of our desired activity can provide useful insights into the relationship between molecular-scale structure and function, in addition to facilitating the development of novel, ‘artificial’ candidates that evolution may not have explored or been exposed to before. This latter feature is more significant than it may first appear, as many of the challenges faced by modern humanity are likely to be the product of survivorship or observation bias — i.e. those problems that natural evolution has already solved or could feasibly solve are less likely to present challenges to us in the first place. Nevertheless, the vast majority of existing approaches are still constrained by cellular expression. Additionally, low-throughput assays for a given activity are often difficult to adapt for ultrahigh-throughput approaches. To help address these challenges, we have developed a platform which is capable of displaying generic DNA and protein on biologically inert and microfluidic-compatible polyacrylamide microbeads. We envision this as an ultrahigh-throughput-compatible, robust, abiotic tool for maintaining the genotype-effector (“phenotype”) linkage over several experimental steps (e.g. PCR, in vitro expression, and the assay itself), as well as a generally applicable module for protein purification, solid-phase (DNA) synthesis, etc. Our platform’s compatibility with in vitro expression may allow exploration of novel sequence space which is poorly accessible in cellulo, and we hope that this will provide novel opportunities for naïve phenotypic screening and drug lead compound discovery. In this thesis, I will first present my work in characterising and enhancing protein immobilisation on these beads using a fully covalent, suicide substrate-based linkage module we developed (polyacrylamide-benzylguanine-SNAP-SpyCatcher-SpyTag; Chapter 1). I find that the beads are highly permeable to proteins, and that protein-display capacity is largely determined by methacrylatebenzylguanine’s input concentration, copolymerisation efficiency and accessibility, but can reach at least 100 μM in practice. Next, we combine this capture method with other protein modules to create two purification and multivalent (up to 30X) assembly workflows for SpyTagged proteins (Chapter 2). I explore the impact of construct valency on the potency of apoptosis induction for two TRAIL-receptor agonists, observing that potency is strongly dependent on agonist valency and therefore likely also on microdomain formation (‘lipid rafting’) for TRAIL-receptor. We use multimerisation to achieve a ~5 pM EC50 for a multivalent assembly of a nanobody, compared to an EC50 of at least 115 nM of the same nanobody in its monovalent form (a more than 2.3×10⁴-fold potency improvement). We simultaneously present clickable modules to control valency which are ‘plug-and-play’ with our protein capture module from Chapter 1, and which can be readily expressed and employed by others. In Chapter 3, I demonstrate and refine an ultrahigh-throughput-compatible phenotypic screen for bacteriolysis. I show that this assay is sensitive to antimicrobial peptide-induced lysis under treatment conditions which could theoretically be achieved using microfluidics and bead protein capacity levels as demonstrated in Chapter 1, although the low potency of antimicrobial peptides makes this practically non-trivial. I therefore begin the process of optimising the practical steps necessary to effectively deliver such a large on-bead payload, beginning with our protease-based solubilisation step and in vitro transcription-translation in Chapter 4.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kuntsche, S.;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://cris.maastri...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    NARCIS
    Doctoral thesis . 2011
    Data sources: NARCIS
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://cris.maastri...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      NARCIS
      Doctoral thesis . 2011
      Data sources: NARCIS
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
184 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Cong, Binghao;

    The primary objective of this thesis is to improve optical setups of a constant volume combustion chamber to better understand the vaporization and spray characteristics of various fuels. The schlieren imaging technique is utilized to visualize phenomena that are challenging to observe directly. In this thesis, the schlieren imaging is used to observe the spray and ignition characteristics of DME and diesel fuels under high injection pressure. First, various optical techniques are discussed and compared under the same test condition including schlieren, shadowgraph, and direct imaging. The advantages for these techniques are presented and the most appropriate technique for different testing scenarios is proposed. Second, the spray and ignition characteristics of DME and diesel are compared. The inert spray for both fuels are observed and compared using schlieren imaging technique. The reactive spray for both fuels are observed and compared using direct imaging and shadowgraph imaging system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scholarship at UWindsor
    Thesis . 2023
    License: CC BY
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scholarship at UWindsor
      Thesis . 2023
      License: CC BY
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Alexander, Nicolle;

    More than two decades after its introduction, neoliberal ideology has increasingly created a class and race-based gap in relation to student achievement in Ontario’s education system. Due to market-based rhetoric shaping policies and legislation, schools are increasingly encouraging students to adhere to the demands of a newly globalized world with a focus on the economy, regardless of their background. This study aims to analyze the presence of neoliberal reforms in Ontario’s education system through decisions made in government from Mike Harris’ in 1995 to the present Doug Ford administration. Specifically, I investigate how the so-called knowledge economy has produced a system that enables students deemed marketable, often from middle- and upper-class white backgrounds, and disables non-marketable students, most often the working poor and the working class, and racial and ethnic minorities, through funding cuts, heightened accountability, and standardized testing. By evaluating Ministry of Education policy documents and documents for both Conservative Premier campaigns, I analyzed the rhetoric used to introduce, consolidate and solidify neoliberal discourse throughout the past twenty years. The results showed that by simplifying education to quantifiable measures, the education system now measures concepts such as equity and inclusion in schools through standardized testing and monthly reports. Further, the rhetoric used to solidify equity and inclusion within the system focuses more on the presentation of both rather than materializing its action in schools. In order to minimize the current student achievement gap in our education system, funding needs to be focalized in social services cut by our government level to properly re“instate” the intended actions of these policies.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rana, Shivang;

    The rarity of Melanoma skin cancer accounts for the dataset collected to be limited and highly skewed, as benign moles can easily mimic the impression of the melanoma-affected area. Such an imbalanced dataset makes training any deep learning classifier network harder by affecting the training stability. We have an intuition that synthesizing such skin lesion medical images could help solve the issue of overfitting in training networks and assist in enforcing the anonymization of actual patients. Despite multiple previous attempts, none of the models were practical for the fast-paced clinical environment. In this thesis, we propose a novel pipeline named SkinCAN AI, inspired by StyleGAN but designed explicitly considering the limitations of the skin lesion dataset and emphasizing the requirement of a faster optimized diagnostic tool that can be easily inferred and integrated into the clinical environment. Our SkinCAN AI model is equipped with its module of adaptive discriminator augmentation that enables limited target data distribution to be learned and artificial data points to be sampled, which further assist the classifier network in learning semantic features. We elucidate the novelty of our SkinCAN AI pipeline by integrating the soft attention module in the classifier network. This module yields an attention mask analyzed by DenseNet201 to focus on learning relevant semantic features from skin lesion images without using any heavy computational burden of artifact removal software. The SkinGAN model achieves an FID score of 0.622 while allowing its synthetic samples to train the DenseNet201 model with an accuracy of 0.9494, AUC of 0.938, specificity of 0.969, and sensitivity of 0.695. We provide evidence in our thesis that our proposed pipelines outperform other state-of-the-art existing networks developed for this task of early diagnosis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scholarship at UWindsor
    Thesis . 2022
    License: CC BY
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scholarship at UWindsor
      Thesis . 2022
      License: CC BY
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Edrisy, Mohamed;

    The emergence of commercial FEA solvers was a significant breakthrough that boosted the accuracy and complexity of engineering design. While composite materials are special materials, their mechanical properties can be custom made by considering the needs and requirements of the design problem. Given the rapidly expanding global consumption of composite materials, access to FEA solvers capable of assigning these materials is an absolute requirement.The CATIA software is a platform for designing, analyzing, and manufacturing of parts. However, there is no meaningful documentation in the public domain exploring the finite element functionalities of CATIA software for composite materials. Isotropic materials are used in numerous references investigating the CATIA FEA solver; however, the extension to composite materials has been lacking. The present study investigates two phenomena: (1) the procedure to import composite material properties into the Generative Structural Analysis workbench, and (2) the pre-processing and the post-processing toolbars and functionalities pertaining to this matter. The thesis does not address the CAD modelling aspects of the composites per se since there are many references available concentrating on such issues in the CATIA public literature.The composite models are selected from different scenarios labeled as benchmark problems. The results generated by CATIA’s native FEA solver for the static, dynamic, and buckling cases are compared with other tools available to the engineering community. These tools encompass the Classical Lamination Theory and two commercial CAE codes, known as ABAQUS and ANSYS.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Stone, Rachel Marie;

    Monitoring intracranial pressure (ICP) has become an important practice in patients with elevated ICP (e.g., traumatic brain injury) to improve patient outcome. However, little information exists surrounding chronic, but sub-clinical elevations in ICP, which may stem from classic cardiovascular risk factors, such as elevated blood pressure (BP). The current methods to assess ICP are invasive and costly; but optic nerve sheath diameter (ONSD) and blood flow pulsatility (pulsatility index; PI) are promising non-invasive techniques, both of which have been reported to strongly correlate with invasive measures of ICP in pathology. However, the interactions of BP, ONSD and PI in otherwise healthy adults, remains undetermined. Accordingly, the purpose of this investigation was to determine the relationship between ONSD, PI and BP, and to highlight possible sex differences in a population of young healthy adults. Sixteen participants (6 females) underwent assessment of arterial BP, ONSD (left and right eyes) and PI (left common carotid artery) using ultrasound. There was a strong correlation between mean ONSD (left and right eye combined) and PI (R=0.735, p=0.001). There was no significant relationship between PI and BP (R=0.058, p=0.832) or ONSD and BP (R=0.272, p=0.309). Additionally, there was a significant difference between males and females for mean ONSD, whereby males demonstrated a larger diameter (males=0.4860.110 vs. females=0.3530.062cm; p=0.018), but there was no significant difference in PI between males and females (males=2.3630.613 vs. females=1.9500.196; p=0.136). Results of this study confirm the relationship between ONSD and PI in a healthy population. While ICP was not directly assessed in the current study, the strong associations between ONSD and PI suggest that their combined assessment may be employed as a tenable surrogate to non-invasively measure ICP when the invasive measure of ICP is unfeasible.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scholarship at UWindsor
    Thesis . 2022
    License: CC BY
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scholarship at UWindsor
      Thesis . 2022
      License: CC BY
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhai, Yuanyuan;

    A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Systems Engineering, University of Regina. xvii, 185 p. Temperature extremes are among the most studied features in the climate research community using both the observed datasets and the simulated outputs from climate models. Such extremes often lead to irreversible societal, ecological, and economic consequences across the globe. Moreover, projected results from climate models have also indicated that changes in future temperature-related extremes will become more frequent and intense with global warming. Therefore, comprehensive knowledge of long-term changes in the observed temperature extremes cannot only help to detect, attribute, and project climate change but can also enhance the development of effective mitigation and adaptation strategies (at regional or site-specific scales) towards the management of catastrophe caused by the extremes. In this dissertation, the observed spatial and temporal variations in temperature extremes are first analyzed at a hemispheric scale based on the newly developed HadEX3 dataset; the impact of large-scale atmospheric circulation patterns on dynamic changes in temperature extremes has also been examined. Then, future changes in extreme temperature variables at a much smaller scale (e.g., local scale) are investigated through a stepwise clustered downscaling method. Based on the downscaled results, future changes in the properties of moderate and severe heatwave conditions are further analyzed. Comparisons of the projected temperature variables and future heatwaves among different climate models provide valuable information on the ability of the models in simulating the long-term variations of temperature extremes. This research can be used to provide a scientific basis and valuable information to prepare for future changes in extreme heat conditions and mitigate the negative impacts of temperature-related extremes on society and the environment. Student yes

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ oURspacearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    oURspace
    Thesis . 2022
    Data sources: oURspace
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ oURspacearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      oURspace
      Thesis . 2022
      Data sources: oURspace
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Knorr, Savannah;

    Southwestern Ontario is dominated by agricultural lands that are extensively tile drained throughout the region as a management practice to remove excess water from fields. While tile drainage is a common practice, the implementation of constructed preferential flow paths, along with surface runoff from agricultural lands, increases nutrient loading risks to connected and downstream environments, and receiving large lakes. Of particular concern in this region is Lake Erie which has a legacy of severely degraded water quality due to excess nutrient loading from agricultural lands within the lake’s drainage basin. While agricultural lands are a known source for nutrient loading, there is a lack of understanding on the role of microbial functional communities in environments connected to these lands, and how they respond to both nutrient inputs and agricultural management practices. This thesis investigates how sustained agricultural management practices alter microbial nutrient cycling communities in receiving aquatic and sediment environments, and the temporal patterns in both nutrient loading and microbial nutrient cycling communities. Results indicate that fertilization practices and agricultural management practices (e.g. tillage), increase nutrient loads to receiving environments. Nitrogen fertilization in particular drives patterns in nitrogen and phosphorus limited conditions in receiving aquatic environments, and phosphorus limited conditions of both aquatic and sediment environments determines patterns in phosphorus mobilization potentials. Finally, nutrient loads and microbial nutrient cycling capacity in aquatic environments increase during precipitation events and in the non-growing season, but decline significantly with increasing distance from agricultural sources and through areas of natural filtration. In contrast sediment environments are more resilient to agricultural inputs and abiotic factors. This research provides insight into temporal patterns of nutrient loading and how nutrient cycling microbial communities respond in receiving aquatic and sediment environments in agriculturally dominated locations of the southwestern Ontario region.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scholarship at UWindsor
    Thesis . 2023
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Scholarship at UWindsor
    Thesis . 2023
    License: CC BY
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Scholarship at UWind...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scholarship at UWindsor
      Thesis . 2023
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Scholarship at UWindsor
      Thesis . 2023
      License: CC BY
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kitchen, Arin Thomas;

    A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements for the Degree of Master of Science in Geology, University of Regina. ix, * 216. Saskatchewan is home to world-class uranium (U) deposits associated with the unconformity between the Proterozoic Athabasca Basin and underlying Archean- Paleoproterozoic basement rocks. Many deposits exhibit a strong spatial association with post-Athabasca faults formed by the reactivation of basement-rooted structures. Deformation bands are products of localized strain in porous sedimentary rocks and are commonly associated with fault damage zones. They can significantly modify porosity due to grain rotation and granular flow. This study investigated deformation bands in sandstones of the basal Manitou Falls Group in eight drillhole fences that transect two fault corridors in the eastern Athabasca Basin: the NNE-trending C1 fault corridor that hosts the Gryphon deposit, and the WS shear zone, a splay of the former that hosts the Phoenix deposit. The deformation bands in the sandstone correspond to mainly shearenhanced compaction bands that increase in abundance toward post-Athabasca faults. The proportion of bands with visible signs of cataclasis increases with depth. Petrographic study places band formation relatively early in the host-rock paragenetic sequence, before introduction of drusy quartz veins and tourmaline associated with U mineralization. Paleo-stress analysis performed using basement- and sandstone-hosted structural orientation data identified two major stress regimes associated with each fault corridor. The first stress regime (A) groups strike-slip (cover) and thrust (cover and basement) solutions at both localities wherein the principal stress (σ1) lies in the horizontal plane roughly perpendicular to the fault; while the second regime (B) groups additional data, with the derived σ1 (~E–W) lying near-parallel to faults. Based on collective macroscopic to microscopic observations, deformation bands are inferred to have formed after Manitou Falls deposition in successive homogeneous stress regimes. It is contended that the bands initially formed in a strike-slip regime (A), characterized by subhorizontal NW–SE-trending σ1 that promoted reverse reactivation of moderately ESEdipping basement-rooted faults. A younger set of thrust-sense bands may have facilitated fault propagation through the sandstone cover, and potentially records the evolution of A to a fully contractional i.e., thrust regime. Most deformation bands thus appear to have formed early, under regional compression that preceded and accompanied basement fault reactivation that led to offset of the unconformity and influx of uraniferous fluids. The second regime (B, σ1 E–W) may mark younger sinistral strike-slip motion (basement and cover) which influenced the development of NW–SE transverse faults. The nature and timing of the bands in this study is compatible with the shallow basin model (<3 km) of uranium ore genesis. Student yes

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ oURspacearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    oURspace
    Thesis . 2022
    Data sources: oURspace
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ oURspacearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      oURspace
      Thesis . 2022
      Data sources: oURspace
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Rogers, Joel;