Powered by OpenAIRE graph
Found an issue? Give us feedback
HEPDataarrow_drop_down
HEPData
Dataset . 2016
Data sources: Datacite
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

"Table 19" of "Measurements of $W^\pm Z$ production cross sections in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings"

Authors: ATLAS Collaboration;

"Table 19" of "Measurements of $W^\pm Z$ production cross sections in $pp$ collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings"

Abstract

CERN-LHC. This paper presents measurements of $W^\pm Z$ production in $pp$ collisions at a center-of-mass energy of 8 TeV. The gauge bosons are reconstructed using their leptonic decay modes into electrons and muons. The data were collected in 2012 by the ATLAS experiment at the Large Hadron Collider, and correspond to an integrated luminosity of 20.3 fb$^{-1}$. The measured inclusive cross section in the detector fiducial region is $\sigma_{W^\pm Z \rightarrow \ell^{'} \nu\ \ell \ell} = 35.1 \pm$ 0.9 (stat.) $\pm 0.8$ (sys.) $\pm 0.8$ (lumi.) fb, for one leptonic decay channel. In comparison, the next-to-leading-order Standard Model expectation is 30.0 $\pm$ 2.1 fb. Cross sections for $W^+Z$ and $W^-Z$ production and their ratio are presented as well as differential cross sections for several kinematic observables. Limits on anomalous triple gauge boson couplings are derived from the transverse mass spectrum of the $W^\pm Z$ system. From the analysis of events with a $W$ and a $Z$ boson associated with two or more forward jets an upper limit at 95% confidence level on the $W^\pm Z$ scattering cross section of 0.63 fb, for each leptonic decay channel, is established, while the Standard Model prediction at next-to-leading order is 0.13 fb. Limits on anomalous quartic gauge boson couplings are also extracted The cross sections are measured in a fiducial phase space reflecting the detector acceptance, defined below. Fiducial phase space definition: - $p_{\mathrm{T}}$ of electrons and muons from Z0 decays > 15 GeV - $p_{\mathrm{T}}$ of electrons and muons from the $W^{\pm}$ decays > 20 GeV - $|\eta|$ of muons and electrons < 2.5 - Leptons from the Z0 boson are separated by $\Delta R(\ell,\ell) > 0.2$ from each other - Leptons from the Z0 and W bosons are separated by $\Delta R(\ell,\ell) > 0.3$ from each other - |dilepton mass - Z0 mass| < 10 GeV - $m_{\mathrm{T}}$ of $W^{\pm}$ > 30 GeV. At particle level, the kinematics of final-state prompt electrons and muons is computed including the contributions from final-state radiated photons within a distance in the ($\eta,\phi$) plane of $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2} = 0.1$ around the direction of the charged lepton. These dressed leptons and the final-state neutrinos that do not originate from hadron or $\tau$ decays are associated with the $W$ and $Z$ boson decay products with an algorithmic approach, called ``resonant shape''. This algorithm is based on the value of an estimator expressing the product of the nominal line shapes of the $W$ and $Z$ resonances $P = \left| \frac{1}{ m^2_{(\ell^+,\ell^-)} - \left(m_Z^{\textrm{PDG}}\right)^2 + i \; \Gamma_Z^{\textrm{PDG}} \; m_Z^{\textrm{PDG}} } \right|^2 \times \; \left| \frac {1} { m^2_{(\ell',\nu_{\ell'})} - \left(m_W^{\textrm{PDG}}\right)^2 + i \; \Gamma_W^{\textrm{PDG}} \; m_W^{\textrm{PDG}} } \right|^2$ where $m_Z^{\textrm{PDG}}$ ($m_W^{\textrm{PDG}}$) and $\Gamma_Z^{\textrm{PDG}}$ ($\Gamma_W^{\textrm{PDG}}$) are the world average mass and total width of the $Z$ ($W$) boson, respectively, as reported by the Particle Data Group~\cite{Agashe:2014kda}. The input to the estimator is the invariant mass $m$ of all possible pairs ($\ell^+,\ell^-$) and ($\ell',\nu_{\ell'}$) satisfying the fiducial selection requirements defined in the next paragraph. The final choice of which leptons are assigned to the $W$ or $Z$ bosons corresponds to the configuration exhibiting the highest value of the estimator. The inclusive cross section is also extrapolated to the total phase space and all W and Z boson decay modes. This result is model-dependent and includes phase space that was not experimentally accessible, so it should be used with caution. Whenever possible, the fiducial cross sections should be used instead, since they are only minimally model-dependent. Fiducial phase space for VBS measurement: additional criteria to the above Fiducial phase space definition - at least 2 jets - $p_{\mathrm{T}}$ of jets > 30 GeV - $|\eta|$ of jets < 4.5 - invariant mass of the 2 leading jets > 500 GeV - leptons and jets separated by $\Delta R(\ell,jet) > 0.3$ where jets are particle level jets with anti-kt R=0.4. Fiducial phase space for aQGC measurement: additional criteria to the above VBS phase space definition - difference in azimuthal angle between W and Z bosons directions $|\Delta \phi(W,Z)| > 2$ - scalar sum of the transverse momenta of the three charged leptons associated with W and Z bosons $\sum |p_{\mathrm{T}}^{\ell}| > 250$ GeV.

Measured fiducial cross section in all $\ell'^\pm \nu \ell^+ \ell'^-$ channels combined, where $\ell, \ell' = e, \mu$. The first systematic uncertainty is the combined systematic uncertainty excluding theory and luminosity uncertainties, the second is the luminosity uncertainty. The last bin is a cross section for all events above the lower end of the bin.

Keywords

Inclusive, DSIG/DMTWZ, 8000, Proton-Proton Scattering, Z Production, Differential Cross Section, W Production, P P --&gt; W+ Z0 X

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Funded by
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.