Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Chemical impurity distribtion (Na, Mg, Sr) in the EPICA Dome C ice core bag 1065 obtained from 2D imaging with LA-ICP-MS

Authors: Bohleber, Pascal; Roman, Marco; Šala, Martin; Delmonte, Barbara; Stenni, Barbara; Barbante, Carlo; Vascon, Sebastiano; +2 Authors

Chemical impurity distribtion (Na, Mg, Sr) in the EPICA Dome C ice core bag 1065 obtained from 2D imaging with LA-ICP-MS

Abstract

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) offers micron-resolution 2D chemical imaging, which has been adapted recently to ice core analysis. Measurements were performed in 2020 at the Ca’Foscari University of Venice, in order to investigate the localization of impurities in the ice samples. Here an image is presented from applying LA-ICP-MS elemental imaging to a glacial (MIS2, bag 1065) samples of the EPICA Dome C ice core from central Antarctica. Lateral resolution is 35 microns both along and perpendicular to the scan direction. Considered as analytes are 23Na, 25Mg and 88Sr. Background and drift correction as well as image construction were performed using the software HDIP (Teledyne Photon Machines, Bozeman, MT, USA). Impurity images are acquired as a pattern of lines, without overlap in the direction perpendicular to that of the scan, and without any further spatial interpolation. Each pixel in an ice core chemical image has a size of 35 μm x 35 μm. For each chemical element the datasets comprise a numerical matrix which contains rows and columns according to the physical size of the image: an image of 7 mm x 35 mm in size has 200 rows and 1000 columns. The numerical entries in this matrix refer to the recorded intensity (e.g. in counts). Values lower than the detection limit are set to zero. Due to the careful synchronization, the individual pixels of the different chemical channels can be considered to be almost perfectly spatially aligned. In contrast, the mosaic of visual images obtained from the laser camera is not a-priori aligned with the chemical images. The visual images are generally characterized by air bubbles (dark blobs), grain boundaries (dark lines) and occasional sub-grain boundaries (thin dark lines).

Related Organizations
Keywords

chemical impurities, Antarctica, LA-ICP-MS, ice core

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 63
    download downloads 34
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
  • 63
    views
    34
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
63
34
Funded by
EC| GOLD-ICE
Project
GOLD-ICE
Next generation analysis of the oldest ice core layers
  • Funder: European Commission (EC)
  • Project Code: 790280
  • Funding stream: H2020 | MSCA-IF-EF-ST
,
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
,
EC| Beyond EPICA
Project
Beyond EPICA
Beyond EPICA Oldest Ice Core: 1,5 Myr of greenhouse gas – climate feedbacks
  • Funder: European Commission (EC)
  • Project Code: 815384
  • Funding stream: H2020 | RIA
result:project:semrel
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.