4 Projects, page 1 of 1
Loading
- Project . 2014 - 2023Funder: UKRI Project Code: EP/L015242/1Funder Contribution: 5,054,050 GBPPartners: LOCKHEED MARTIN ACULIGHT CORPORATION, UNSW, Nokia Research Centre, Université Paris Diderot, NPL, Defence Science & Tech Lab DSTL, Google Inc, TREL, DFJ Esprit, Nature Publishing Group...
Quantum technologies promise a transformation of measurement, communication and computation by using ideas originating from quantum physics. The UK was the birthplace of many of the seminal ideas and techniques; the technologies are now ready to translate from the laboratory into industrial applications. Since international companies are already moving in this area, there is a critical need across the UK for highly-skilled researchers who will be the future leaders in quantum technology. Our proposal is driven by the need to train this new generation of leaders. They will need to be equipped to function in a complex research and engineering landscape where quantum physics meets cryptography, complexity and information theory, devices, materials, software and hardware engineering. We propose to train a cohort of leaders to meet these challenges within the highly interdisciplinary research environment provided by UCL, its commercial and governmental laboratory partners. In their first year the students will obtain a background in devices, information and computational sciences through three concentrated modules organized around current research issues. They will complete a team project and a longer individual research project, preparing them for their choice of main research doctoral topic at the end of the year. Cross-cohort training in communication skills, technology transfer, enterprise, teamwork and career planning will continue throughout the four years. Peer to peer learning will be continually facilitated not only by organized cross-cohort activities, but also by the day to day social interaction among the members of the cohort thanks to their co-location at UCL.
- Project . 2014 - 2023Funder: UKRI Project Code: EP/L016753/1Funder Contribution: 4,940,910 GBPPartners: Spirit Aerosystems, NPL, Defence Science & Tech Lab DSTL, UT, THALES UK, FHG, SU2P, Qioptiq Ltd, TI, University of Pennsylvania...
We propose a Centre for Doctoral Training in Integrative Sensing and Measurement that addresses the unmet UK need for specialist training in innovative sensing and measurement systems identified by EPSRC priorities the TSB and EPOSS . The proposed CDT will benefit from the strategic, targeted investment of >£20M by the partners in enhancing sensing and measurement research capability and by alignment with the complementary, industry-focused Innovation Centre in Sensor and Imaging Systems (CENSIS). This investment provides both the breadth and depth required to provide high quality cohort-based training in sensing across the sciences, medicine and engineering and into the myriad of sensing applications, whilst ensuring PhD supervision by well-resourced internationally leading academics with a passion for sensor science and technology. The synergistic partnership of GU and UoE with their active sensors-related research collaborations with over 160 companies provides a unique research excellence and capability to provide a dynamic and innovative research programme in sensing and measurement to fuel the development pipeline from initial concept to industrial exploitation.
- Project . 2014 - 2023Funder: UKRI Project Code: EP/L016257/1Funder Contribution: 2,750,320 GBPPartners: Nikken UK, University of Huddersfield, Technicut, Boeing Co, NCC, Sandvik Coromant UK Ltd, EADS Airbus, Messier-Dowty Ltd, University of Bristol, UBC...
The aim of the centre is to train research engineers with skills and expertise at the forefront of knowledge in machining science. Machining is at the heart of almost all manufacturing processes, ranging from the milling and turning processes used to create parts for the air-craft engines that power the planes we travel on, through to the grinding processes used to shape replacement hip-joints. As we demand more from engineered components, and move to materials such as composites or high strength alloys, their intrinsic strength or complexity as materials makes them harder to machine. This frequently means that machining processes are slower, require more manual interventions, and produce more out of tolerance parts: all these factors result in higher costs. Research into machining science can make a tangible difference to the way in which modern engineering components are produced. For example, recent machining research by the AMRC will be used at Rolls-Royce's new 20,000 square metre factory in Tyne & Wear. This factory will employ over 400 people and make over 2000 engine components per year, for aircraft including the Boeing 786 Dreamliner and the Airbus A380 [1]. Our doctoral training centre will equip research engineers with the skills and expertise that places them at the forefront of machining science. Cohorts of doctoral researchers will each work on an industrially posed machining problem. They will aim to bridge the gap between industry and academia, as they will first research areas of appropriate machining science, before transferring this technology to their sponsor company. Research and training will take place within a collaborative environment, with research engineers based in the Advanced Manufacturing Research Centre (AMRC) in Sheffield, where they will be mentored by academics working at the forefront of machining science, and will have access to some of the latest equipment available. Industrial participation is central to our training vision, where in addition to working on an industrially proposed problem, each research engineer will be co- funded and supervised by industry. We see this interaction as essential to ensure the research and training we provide is timely, and addresses the key challenges posed by UK industry. [1] Rolls-Royce press release, Friday, 21 September 2012. "Rolls-Royce breaks ground for new facility in North East"
- Project . 2014 - 2023Funder: UKRI Project Code: EP/L01582X/1Funder Contribution: 3,149,530 GBPPartners: Federal University of Sao Joao del Rei, Chalmers University of Technology, ORNL, University of Melbourne, EDF ENERGY NUCLEAR GENERATION LIMITED, DFO, CAS, CEFAS, United States Department of the Interior, Nova Scotia Department of Energy...
UK economic growth, security, and sustainability are in danger of being compromised due to insufficient infrastructure supply. This partly reflects a recognised skills shortage in Engineering and the Physical Sciences. The proposed EPSRC funded Centre for Doctoral Training (CDT) aims to produce the next generation of engineers and scientists needed to meet the challenge of providing Sustainable Infrastructure Systems critical for maintaining UK competitiveness. The CDT will focus on Energy, Water, and Transport in the priority areas of National Infrastructure Systems, Sustainable Built Environment, and Water. Future Engineers and Scientists must have a wide range of transferable and technical skills and be able to collaborate at the interdisciplinary interface. Key attributes include leadership, the ability to communicate and work as a part of a large multidisciplinary network, and to think outside the box to develop creative and innovative solutions to novel problems. The CDT will be based on a cohort ethos to enhance educational efficiency by integrating best practices of traditional longitudinal top-down / bottom-up learning with innovative lateral knowledge exchange through peer-to-peer "coaching" and outreach. To inspire the next generation of engineers and scientists an outreach supply chain will link the focal student within his/her immediate cohort with: 1) previous and future cohorts; 2) other CDTs within and outside the University of Southampton; 3) industry; 4) academics; 5) the general public; and 6) Government. The programme will be composed of a first year of transferable and technical taught elements followed by 3 years of dedicated research with the opportunity to select further technical modules, and/or spend time in industry, and experience international training placements. Development of expertise will culminate in an individual project aligned to the relevant research area where the skills acquired are practiced. Cohort building and peer-to-peer learning will be on-going throughout the programme, with training in leadership, communication, and problem solving delivered through initiatives such as a team building residential course; a student-led seminar series and annual conference; a Group Design Project (national or international); and industry placement. The cohort will also mentor undergraduates and give outreach presentations to college students, school children, and other community groups. All activities are designed to facilitate the creation of a larger network. Students will be supported throughout the programme by their supervisory team, intensively at the start, through weekly tutorials during which a technical skills gap analysis will be conducted to inform future training needs. Benefitting from the £120M investment in the new Engineering Campus at the Boldrewood site the CDT will provide a high class education environment with access to state-of-the-art computer and experimental facilities, including large-scale research infrastructure, e.g. hydraulics laboratories with large flumes and wave tanks which are unparalleled in the UK. Students will benefit from the co-location of engineering, education, and research alongside industry users through this initiative. To provide cohort, training, inspiration and research legacies the CDT will deliver: 1) Sixty doctoral graduates in engineering and science with a broad understanding of the challenges faced by the Energy, Water, and Transport industries and the specialist technical skills needed to solve them. They will be ambitious research, engineering, industrial, and political leaders of the future with an ability to demonstrate creativity and innovation when working as part of teams. 2) A network of home-grown talent, comprising of several CDT cohorts, with a greater capability to solve the "Big Problems" than individuals, or small isolated clusters of expertise, typically generated through traditional training programmes.
4 Projects, page 1 of 1
Loading
- Project . 2014 - 2023Funder: UKRI Project Code: EP/L015242/1Funder Contribution: 5,054,050 GBPPartners: LOCKHEED MARTIN ACULIGHT CORPORATION, UNSW, Nokia Research Centre, Université Paris Diderot, NPL, Defence Science & Tech Lab DSTL, Google Inc, TREL, DFJ Esprit, Nature Publishing Group...
Quantum technologies promise a transformation of measurement, communication and computation by using ideas originating from quantum physics. The UK was the birthplace of many of the seminal ideas and techniques; the technologies are now ready to translate from the laboratory into industrial applications. Since international companies are already moving in this area, there is a critical need across the UK for highly-skilled researchers who will be the future leaders in quantum technology. Our proposal is driven by the need to train this new generation of leaders. They will need to be equipped to function in a complex research and engineering landscape where quantum physics meets cryptography, complexity and information theory, devices, materials, software and hardware engineering. We propose to train a cohort of leaders to meet these challenges within the highly interdisciplinary research environment provided by UCL, its commercial and governmental laboratory partners. In their first year the students will obtain a background in devices, information and computational sciences through three concentrated modules organized around current research issues. They will complete a team project and a longer individual research project, preparing them for their choice of main research doctoral topic at the end of the year. Cross-cohort training in communication skills, technology transfer, enterprise, teamwork and career planning will continue throughout the four years. Peer to peer learning will be continually facilitated not only by organized cross-cohort activities, but also by the day to day social interaction among the members of the cohort thanks to their co-location at UCL.
- Project . 2014 - 2023Funder: UKRI Project Code: EP/L016753/1Funder Contribution: 4,940,910 GBPPartners: Spirit Aerosystems, NPL, Defence Science & Tech Lab DSTL, UT, THALES UK, FHG, SU2P, Qioptiq Ltd, TI, University of Pennsylvania...
We propose a Centre for Doctoral Training in Integrative Sensing and Measurement that addresses the unmet UK need for specialist training in innovative sensing and measurement systems identified by EPSRC priorities the TSB and EPOSS . The proposed CDT will benefit from the strategic, targeted investment of >£20M by the partners in enhancing sensing and measurement research capability and by alignment with the complementary, industry-focused Innovation Centre in Sensor and Imaging Systems (CENSIS). This investment provides both the breadth and depth required to provide high quality cohort-based training in sensing across the sciences, medicine and engineering and into the myriad of sensing applications, whilst ensuring PhD supervision by well-resourced internationally leading academics with a passion for sensor science and technology. The synergistic partnership of GU and UoE with their active sensors-related research collaborations with over 160 companies provides a unique research excellence and capability to provide a dynamic and innovative research programme in sensing and measurement to fuel the development pipeline from initial concept to industrial exploitation.
- Project . 2014 - 2023Funder: UKRI Project Code: EP/L016257/1Funder Contribution: 2,750,320 GBPPartners: Nikken UK, University of Huddersfield, Technicut, Boeing Co, NCC, Sandvik Coromant UK Ltd, EADS Airbus, Messier-Dowty Ltd, University of Bristol, UBC...
The aim of the centre is to train research engineers with skills and expertise at the forefront of knowledge in machining science. Machining is at the heart of almost all manufacturing processes, ranging from the milling and turning processes used to create parts for the air-craft engines that power the planes we travel on, through to the grinding processes used to shape replacement hip-joints. As we demand more from engineered components, and move to materials such as composites or high strength alloys, their intrinsic strength or complexity as materials makes them harder to machine. This frequently means that machining processes are slower, require more manual interventions, and produce more out of tolerance parts: all these factors result in higher costs. Research into machining science can make a tangible difference to the way in which modern engineering components are produced. For example, recent machining research by the AMRC will be used at Rolls-Royce's new 20,000 square metre factory in Tyne & Wear. This factory will employ over 400 people and make over 2000 engine components per year, for aircraft including the Boeing 786 Dreamliner and the Airbus A380 [1]. Our doctoral training centre will equip research engineers with the skills and expertise that places them at the forefront of machining science. Cohorts of doctoral researchers will each work on an industrially posed machining problem. They will aim to bridge the gap between industry and academia, as they will first research areas of appropriate machining science, before transferring this technology to their sponsor company. Research and training will take place within a collaborative environment, with research engineers based in the Advanced Manufacturing Research Centre (AMRC) in Sheffield, where they will be mentored by academics working at the forefront of machining science, and will have access to some of the latest equipment available. Industrial participation is central to our training vision, where in addition to working on an industrially proposed problem, each research engineer will be co- funded and supervised by industry. We see this interaction as essential to ensure the research and training we provide is timely, and addresses the key challenges posed by UK industry. [1] Rolls-Royce press release, Friday, 21 September 2012. "Rolls-Royce breaks ground for new facility in North East"
- Project . 2014 - 2023Funder: UKRI Project Code: EP/L01582X/1Funder Contribution: 3,149,530 GBPPartners: Federal University of Sao Joao del Rei, Chalmers University of Technology, ORNL, University of Melbourne, EDF ENERGY NUCLEAR GENERATION LIMITED, DFO, CAS, CEFAS, United States Department of the Interior, Nova Scotia Department of Energy...
UK economic growth, security, and sustainability are in danger of being compromised due to insufficient infrastructure supply. This partly reflects a recognised skills shortage in Engineering and the Physical Sciences. The proposed EPSRC funded Centre for Doctoral Training (CDT) aims to produce the next generation of engineers and scientists needed to meet the challenge of providing Sustainable Infrastructure Systems critical for maintaining UK competitiveness. The CDT will focus on Energy, Water, and Transport in the priority areas of National Infrastructure Systems, Sustainable Built Environment, and Water. Future Engineers and Scientists must have a wide range of transferable and technical skills and be able to collaborate at the interdisciplinary interface. Key attributes include leadership, the ability to communicate and work as a part of a large multidisciplinary network, and to think outside the box to develop creative and innovative solutions to novel problems. The CDT will be based on a cohort ethos to enhance educational efficiency by integrating best practices of traditional longitudinal top-down / bottom-up learning with innovative lateral knowledge exchange through peer-to-peer "coaching" and outreach. To inspire the next generation of engineers and scientists an outreach supply chain will link the focal student within his/her immediate cohort with: 1) previous and future cohorts; 2) other CDTs within and outside the University of Southampton; 3) industry; 4) academics; 5) the general public; and 6) Government. The programme will be composed of a first year of transferable and technical taught elements followed by 3 years of dedicated research with the opportunity to select further technical modules, and/or spend time in industry, and experience international training placements. Development of expertise will culminate in an individual project aligned to the relevant research area where the skills acquired are practiced. Cohort building and peer-to-peer learning will be on-going throughout the programme, with training in leadership, communication, and problem solving delivered through initiatives such as a team building residential course; a student-led seminar series and annual conference; a Group Design Project (national or international); and industry placement. The cohort will also mentor undergraduates and give outreach presentations to college students, school children, and other community groups. All activities are designed to facilitate the creation of a larger network. Students will be supported throughout the programme by their supervisory team, intensively at the start, through weekly tutorials during which a technical skills gap analysis will be conducted to inform future training needs. Benefitting from the £120M investment in the new Engineering Campus at the Boldrewood site the CDT will provide a high class education environment with access to state-of-the-art computer and experimental facilities, including large-scale research infrastructure, e.g. hydraulics laboratories with large flumes and wave tanks which are unparalleled in the UK. Students will benefit from the co-location of engineering, education, and research alongside industry users through this initiative. To provide cohort, training, inspiration and research legacies the CDT will deliver: 1) Sixty doctoral graduates in engineering and science with a broad understanding of the challenges faced by the Energy, Water, and Transport industries and the specialist technical skills needed to solve them. They will be ambitious research, engineering, industrial, and political leaders of the future with an ability to demonstrate creativity and innovation when working as part of teams. 2) A network of home-grown talent, comprising of several CDT cohorts, with a greater capability to solve the "Big Problems" than individuals, or small isolated clusters of expertise, typically generated through traditional training programmes.