3 Projects, page 1 of 1
Loading
- Project . 2014 - 2014Funder: UKRI Project Code: EP/K040251/1Funder Contribution: 1,157,930 GBPPartners: D-RisQ Ltd, JacobsUni, UWO, QMUL, Institute of Mathematics and its Applica, Smith Institute, LMS, SU, MICROSOFT RESEARCH LIMITED, DECC...
Mathematics is a profound intellectual achievement with impact on all aspects of business and society. For centuries, the highest level of mathematics has been seen as an isolated creative activity, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. "Crowdsourcing" pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs that are just too long and complicated for any human to comprehend, using programs designed to verify hardware. Yet these techniques are currently used in stand-alone fashion, lacking integration with each other or with human creativity or fallibility. Social machines are new paradigm, identified by Berners-Lee, for viewing a combination of people and computers as a single problem-solving entity. Our long-term vision is to change mathematics, transforming the reach, pace, and impact of mathematics research, through creating a mathematics social machine: a combination of people, computers, and archives to create and apply mathematics. Thus, for example, an industry researcher wanting to design a network with specific properties could quickly access diverse research skills and research; explore hypotheses; discuss possible solutions; obtain surety of correctness to a desired level; and create new mathematics that individual effort might never imagine or verify. Seamlessly integrated "under the hood" might be a mixture of diverse people and machines, formal and informal approaches, old and new mathematics, experiment and proof. The obstacles to realising the vision are that (i) We do not have a high level understanding of the production of mathematics by people and machines, integrating the current diverse research approaches (ii) There is no shared view among the diverse re- search and user communities of what is and might be possible or desirable The outcome of the fellowship will be a new vision of a mathematics social machine, transforming the reach, pace and impact of mathematics. It will deliver: analysis and experiment to understand current and future production of mathematics as a social machine; designs and prototypes; ownership among academic and industry stakeholders; a roadmap for delivery of the next generation of social machines; and an international team ready to make it a reality.
- Project . 2014 - 2014Funder: UKRI Project Code: NE/M005968/1Funder Contribution: 16,652 GBPPartners: Umeå University, University of Cambridge, UVA, University of Notre Dame Indiana, McGill University
North temperate regions hold much of the planet's freshwater, an essential ingredient for all life. But anthropogenic activities, such as land-use change, are dramatically altering these landscapes and threatening the delivery of key services provided by aquatic ecosystems, such as productive fish populations. Contemporary paradigms of aquatic conservation have emphasized inputs of pollutants and water resource development as causes of declining water security and biodiversity, but are failing when these two factors alone are improved. Increasingly, local watersheds are seen as critical controls of aquatic ecosystems. This is spurred by the recent discovery that pathways of energy mobilization upwards through aquatic food webs from microbes to fish rely on organic matter originating from terrestrial vegetation. In other words, new research is proving the adage that fish are in fact a "forest product". Any factor that changes the quality and quantity of organic matter exported from land into water will influence the delivery of aquatic ecosystem services. For example, human land use practices and emerging disturbances, such as fire and forest pathogens, will change the cycling of nutrients from terrestrial vegetation into aquatic ecosystems. But which of these factors are most important and consistently operating across different geographic regions is unknown. Identifying these drivers is critical for developing new watershed-level approaches for conserving freshwater that link actions on land to processes in water. Our research will test how different watershed characteristics control the use of terrestrial resources in aquatic food webs across lake-rich regions of the world. We will use our findings to forecast future changes in lake food webs associated with global change and recommend better practices for conserving freshwater resources. Our approach will be to bring together the leading international researchers studying terrestrial-aquatic linkages and synthesize available food web measurements from over 175 lakes. Using bioclimatic, vegetation, biogeochemistry, and land-use data extracted for each study lake, alongside cutting-edge statistical modelling techniques, we will predict the terrestrial drivers of lake food webs and link them to biomass accumulation by aquatic organisms. Outcomes of this research will be highly relevant to the UK and international policy around managing freshwater supplies by demonstrating strong linkages between terrestrial and aquatic ecosystems. A particular focus of our research is improving the Water Framework Directive (WFD), a piece of pan-European legislation designed to protect freshwater. We hope to use our research to impact policy associated with the WFD by engaging with the European Commission in a knowledge exchange symposium that we are organizing at the conclusion of our project. This project will also have many applications for improving regional land use planning and management, as well as restoring environmentally damaged landscapes. We are working closely with partners in the mining industry and government in associated NERC-funded projects and will use the results of this project to better inform these partners of the best practices for re-vegetating degraded watersheds.
- Project . 2014 - 2014Funder: UKRI Project Code: BB/L026325/1Funder Contribution: 9,072 GBPPartners: University of Salford, University of Toronto, Leibniz Institute of Plant Genetics, CIT, Babraham Institute, University of Connecticut Health Center
United Kingdom
3 Projects, page 1 of 1
Loading
- Project . 2014 - 2014Funder: UKRI Project Code: EP/K040251/1Funder Contribution: 1,157,930 GBPPartners: D-RisQ Ltd, JacobsUni, UWO, QMUL, Institute of Mathematics and its Applica, Smith Institute, LMS, SU, MICROSOFT RESEARCH LIMITED, DECC...
Mathematics is a profound intellectual achievement with impact on all aspects of business and society. For centuries, the highest level of mathematics has been seen as an isolated creative activity, to produce a proof for review and acceptance by research peers. Mathematics is now at a remarkable inflexion point, with new technology radically extending the power and limits of individuals. "Crowdsourcing" pulls together diverse experts to solve problems; symbolic computation tackles huge routine calculations; and computers check proofs that are just too long and complicated for any human to comprehend, using programs designed to verify hardware. Yet these techniques are currently used in stand-alone fashion, lacking integration with each other or with human creativity or fallibility. Social machines are new paradigm, identified by Berners-Lee, for viewing a combination of people and computers as a single problem-solving entity. Our long-term vision is to change mathematics, transforming the reach, pace, and impact of mathematics research, through creating a mathematics social machine: a combination of people, computers, and archives to create and apply mathematics. Thus, for example, an industry researcher wanting to design a network with specific properties could quickly access diverse research skills and research; explore hypotheses; discuss possible solutions; obtain surety of correctness to a desired level; and create new mathematics that individual effort might never imagine or verify. Seamlessly integrated "under the hood" might be a mixture of diverse people and machines, formal and informal approaches, old and new mathematics, experiment and proof. The obstacles to realising the vision are that (i) We do not have a high level understanding of the production of mathematics by people and machines, integrating the current diverse research approaches (ii) There is no shared view among the diverse re- search and user communities of what is and might be possible or desirable The outcome of the fellowship will be a new vision of a mathematics social machine, transforming the reach, pace and impact of mathematics. It will deliver: analysis and experiment to understand current and future production of mathematics as a social machine; designs and prototypes; ownership among academic and industry stakeholders; a roadmap for delivery of the next generation of social machines; and an international team ready to make it a reality.
- Project . 2014 - 2014Funder: UKRI Project Code: NE/M005968/1Funder Contribution: 16,652 GBPPartners: Umeå University, University of Cambridge, UVA, University of Notre Dame Indiana, McGill University
North temperate regions hold much of the planet's freshwater, an essential ingredient for all life. But anthropogenic activities, such as land-use change, are dramatically altering these landscapes and threatening the delivery of key services provided by aquatic ecosystems, such as productive fish populations. Contemporary paradigms of aquatic conservation have emphasized inputs of pollutants and water resource development as causes of declining water security and biodiversity, but are failing when these two factors alone are improved. Increasingly, local watersheds are seen as critical controls of aquatic ecosystems. This is spurred by the recent discovery that pathways of energy mobilization upwards through aquatic food webs from microbes to fish rely on organic matter originating from terrestrial vegetation. In other words, new research is proving the adage that fish are in fact a "forest product". Any factor that changes the quality and quantity of organic matter exported from land into water will influence the delivery of aquatic ecosystem services. For example, human land use practices and emerging disturbances, such as fire and forest pathogens, will change the cycling of nutrients from terrestrial vegetation into aquatic ecosystems. But which of these factors are most important and consistently operating across different geographic regions is unknown. Identifying these drivers is critical for developing new watershed-level approaches for conserving freshwater that link actions on land to processes in water. Our research will test how different watershed characteristics control the use of terrestrial resources in aquatic food webs across lake-rich regions of the world. We will use our findings to forecast future changes in lake food webs associated with global change and recommend better practices for conserving freshwater resources. Our approach will be to bring together the leading international researchers studying terrestrial-aquatic linkages and synthesize available food web measurements from over 175 lakes. Using bioclimatic, vegetation, biogeochemistry, and land-use data extracted for each study lake, alongside cutting-edge statistical modelling techniques, we will predict the terrestrial drivers of lake food webs and link them to biomass accumulation by aquatic organisms. Outcomes of this research will be highly relevant to the UK and international policy around managing freshwater supplies by demonstrating strong linkages between terrestrial and aquatic ecosystems. A particular focus of our research is improving the Water Framework Directive (WFD), a piece of pan-European legislation designed to protect freshwater. We hope to use our research to impact policy associated with the WFD by engaging with the European Commission in a knowledge exchange symposium that we are organizing at the conclusion of our project. This project will also have many applications for improving regional land use planning and management, as well as restoring environmentally damaged landscapes. We are working closely with partners in the mining industry and government in associated NERC-funded projects and will use the results of this project to better inform these partners of the best practices for re-vegetating degraded watersheds.
- Project . 2014 - 2014Funder: UKRI Project Code: BB/L026325/1Funder Contribution: 9,072 GBPPartners: University of Salford, University of Toronto, Leibniz Institute of Plant Genetics, CIT, Babraham Institute, University of Connecticut Health Center
United Kingdom