search
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
8 Projects, page 1 of 1

  • Canada
  • 2022-2022
  • UK Research and Innovation
  • 2014

  • Funder: UKRI Project Code: EP/L016362/1
    Funder Contribution: 3,527,890 GBP
    Partners: Indian Institute of Technology Guwahati, Cochin University, CAS, ZJOU, HSL, SEU, Scottish and Southern Energy SSE plc, McMaster University, ANSYS UK LIMITED, University of the Witwatersrand...

    The motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.

  • Funder: UKRI Project Code: EP/L016257/1
    Funder Contribution: 2,750,320 GBP
    Partners: University of Huddersfield, University of Bristol, Boeing Co, Messier-Dowty Ltd, University of Sheffield, Sandvik Coromant UK Ltd, NCC, ROLLS-ROYCE PLC, Technicut, EADS Airbus...

    The aim of the centre is to train research engineers with skills and expertise at the forefront of knowledge in machining science. Machining is at the heart of almost all manufacturing processes, ranging from the milling and turning processes used to create parts for the air-craft engines that power the planes we travel on, through to the grinding processes used to shape replacement hip-joints. As we demand more from engineered components, and move to materials such as composites or high strength alloys, their intrinsic strength or complexity as materials makes them harder to machine. This frequently means that machining processes are slower, require more manual interventions, and produce more out of tolerance parts: all these factors result in higher costs. Research into machining science can make a tangible difference to the way in which modern engineering components are produced. For example, recent machining research by the AMRC will be used at Rolls-Royce's new 20,000 square metre factory in Tyne & Wear. This factory will employ over 400 people and make over 2000 engine components per year, for aircraft including the Boeing 786 Dreamliner and the Airbus A380 [1]. Our doctoral training centre will equip research engineers with the skills and expertise that places them at the forefront of machining science. Cohorts of doctoral researchers will each work on an industrially posed machining problem. They will aim to bridge the gap between industry and academia, as they will first research areas of appropriate machining science, before transferring this technology to their sponsor company. Research and training will take place within a collaborative environment, with research engineers based in the Advanced Manufacturing Research Centre (AMRC) in Sheffield, where they will be mentored by academics working at the forefront of machining science, and will have access to some of the latest equipment available. Industrial participation is central to our training vision, where in addition to working on an industrially proposed problem, each research engineer will be co- funded and supervised by industry. We see this interaction as essential to ensure the research and training we provide is timely, and addresses the key challenges posed by UK industry. [1] Rolls-Royce press release, Friday, 21 September 2012. "Rolls-Royce breaks ground for new facility in North East"

  • Funder: UKRI Project Code: EP/L016753/1
    Funder Contribution: 4,940,910 GBP
    Partners: NPL, Wolfson Microelectronics, UT, FHG, Gloucestershire Hospitals NHS Fdn Trust, Spirit Aerosystems, SELENIUM, LTD, SU2P, ST Microelectronics Limited (UK), Qioptiq Ltd...

    We propose a Centre for Doctoral Training in Integrative Sensing and Measurement that addresses the unmet UK need for specialist training in innovative sensing and measurement systems identified by EPSRC priorities the TSB and EPOSS . The proposed CDT will benefit from the strategic, targeted investment of >£20M by the partners in enhancing sensing and measurement research capability and by alignment with the complementary, industry-focused Innovation Centre in Sensor and Imaging Systems (CENSIS). This investment provides both the breadth and depth required to provide high quality cohort-based training in sensing across the sciences, medicine and engineering and into the myriad of sensing applications, whilst ensuring PhD supervision by well-resourced internationally leading academics with a passion for sensor science and technology. The synergistic partnership of GU and UoE with their active sensors-related research collaborations with over 160 companies provides a unique research excellence and capability to provide a dynamic and innovative research programme in sensing and measurement to fuel the development pipeline from initial concept to industrial exploitation.

  • Funder: UKRI Project Code: EP/L015242/1
    Funder Contribution: 5,054,050 GBP
    Partners: NUS, NPL, Google Inc, Hitachi Cambridge Laboratory, Nokia Research Centre, University of London, UNSW, D-Wave Systems Inc, Nature Publishing Group, Swiss Federal Institute of Technology ETH Zürich...

    Quantum technologies promise a transformation of measurement, communication and computation by using ideas originating from quantum physics. The UK was the birthplace of many of the seminal ideas and techniques; the technologies are now ready to translate from the laboratory into industrial applications. Since international companies are already moving in this area, there is a critical need across the UK for highly-skilled researchers who will be the future leaders in quantum technology. Our proposal is driven by the need to train this new generation of leaders. They will need to be equipped to function in a complex research and engineering landscape where quantum physics meets cryptography, complexity and information theory, devices, materials, software and hardware engineering. We propose to train a cohort of leaders to meet these challenges within the highly interdisciplinary research environment provided by UCL, its commercial and governmental laboratory partners. In their first year the students will obtain a background in devices, information and computational sciences through three concentrated modules organized around current research issues. They will complete a team project and a longer individual research project, preparing them for their choice of main research doctoral topic at the end of the year. Cross-cohort training in communication skills, technology transfer, enterprise, teamwork and career planning will continue throughout the four years. Peer to peer learning will be continually facilitated not only by organized cross-cohort activities, but also by the day to day social interaction among the members of the cohort thanks to their co-location at UCL.

  • Funder: UKRI Project Code: EP/L015110/1
    Funder Contribution: 4,041,680 GBP
    Partners: University of Pennsylvania, University of Toronto, SUPA, ANL, Mondelez International, Hitachi Cambridge Laboratory, Element Six Ltd (UK), Cairn Energy Ltd, Accelrys Limited, ILL...

    The Scottish Doctoral Training Centre in Condensed Matter Physics, known as the CM-DTC, is an EPSRC-funded Centre for Doctoral Training (CDT) addressing the broad field of Condensed Matter Physics (CMP). CMP is a core discipline that underpins many other areas of science, and is one of the Priority Areas for this CDT call. Renewal funding for the CM-DTC will allow five more annual cohorts of PhD students to be recruited, trained and released onto the market. They will be highly educated professionals with a knowledge of the field, in depth and in breadth, that will equip them for future leadership in a variety of academic and industrial careers. Condensed Matter Physics research impacts on many other fields of science including engineering, biophysics, photonics, chemistry, and materials science. It is a significant engine for innovation and drives new technologies. Recent examples include the use of liquid crystals for displays including flat-screen and 3D television, and the use of solid-state or polymeric LEDs for power-saving high-illumination lighting systems. Future examples may involve harnessing the potential of graphene (the world's thinnest and strongest sheet-like material), or the creation of exotic low-temperature materials whose properties may enable the design of radically new types of (quantum) computer with which to solve some of the hardest problems of mathematics. The UK's continued ability to deliver transformative technologies of this character requires highly trained CMP researchers such as those the Centre will produce. The proposed training approach is built on a strong framework of taught lecture courses, with core components and a wide choice of electives. This spans the first two years so that PhD research begins alongside the coursework from the outset. It is complemented by hands-on training in areas such as computer-intensive physics and instrument building (including workshop skills and 3D printing). Some lecture courses are delivered in residential schools but most are videoconferenced live, using the well-established infrastructure of SUPA (the Scottish Universities Physics Alliance). Students meet face to face frequently, often for more than one day, at cohort-building events that emphasise teamwork in science, outreach, transferable skills and careers training. National demand for our graduates is demonstrated by the large number of companies and organisations who have chosen to be formally affiliated with our CDT as Industrial Associates. The range of sectors spanned by these Associates is notable. Some, such as e2v and Oxford Instruments, are scientific consultancies and manufacturers of scientific equipment, whom one would expect to be among our core stakeholders. Less obviously, the list also represents scientific publishers, software houses, companies small and large from the energy sector, large multinationals such as Solvay-Rhodia and Siemens, and finance and patent law firms. This demonstrates a key attraction of our graduates: their high levels of core skills, and a hands-on approach to problem solving. These impart a discipline-hopping ability which more focussed training for specific sectors can complement, but not replace. This breadth is prized by employers in a fast-changing environment where years of vocational training can sometimes be undermined very rapidly by unexpected innovation in an apparently unrelated sector. As the UK builds its technological future by funding new CDTs across a range of priority areas, it is vital to include some that focus on core discipline skills, specifically Condensed Matter Physics, rather than the interdisciplinary or semi-vocational training that features in many other CDTs. As well as complementing those important activities today, our highly trained PhD graduates will be equipped to lay the foundations for the research fields (and perhaps some of the industrial sectors) of tomorrow.

  • Funder: UKRI Project Code: EP/L016273/1
    Funder Contribution: 3,533,530 GBP
    Partners: University of Oulu, UCT, EADS UK Ltd, Pohang University of Science and Techno, FORD MOTOR COMPANY LIMITED, Otto Fuchs KG, Constellium, Defence Science & Tech Lab DSTL, HZG, Novelis Global Technology Centre...

    Metallic materials are used in an enormous range of applications, from everyday objects, such as aluminium drinks cans and copper wiring to highly-specialised, advanced applications such as nickel superalloy turbine blades in jet engines and stainless steel nuclear reactor pressure vessels. Despite advances in the understanding of metallic materials and their manufacture, significant challenges remain. Research in advanced metallic systems helps us to understand how the structure of a material and the way it is processed affects its properties and performance. This knowledge is essential for us to develop the materials needed to tackle current challenges in energy, transport and sustainability. We must learn how to use the earth's resources in a sustainable way, finding alternatives for rare but strategically important elements and increasing how much material we recycle and reuse. This will partly be achieved through developing manufacturing and production processes which use less energy and are less wasteful and through improving product designs or developing and improving the materials we use. In order to deliver these new materials and processes, industry requires a lot more specialists who have a thorough understanding of metallic materials science and engineering coupled with the professional and technical leadership skills to apply this expertise. The EPSRC Centre for Doctoral Training in Advanced Metallic Systems will increase the number of metallurgical specialists, currently in short supply, by training high level physical science and engineering graduates in fundamental materials science and engineering in preparation for doctoral level research on challenging metallic material and manufacturing problems. By working collaboratively with industry, while undertaking a comprehensive programme of professional skills training, our graduates will be equipped to be tomorrow's research leaders, knowledge workers and captains of industry.

  • Funder: UKRI Project Code: EP/L01582X/1
    Funder Contribution: 3,149,530 GBP
    Partners: Buro Happold Limited, University of California, Berkeley, EDF ENERGY NUCLEAR GENERATION LIMITED, Kilbride Group, CEMIG, W J Groundwater Ltd, WESSEX WATER, DFO, CAS, University of Southampton...

    UK economic growth, security, and sustainability are in danger of being compromised due to insufficient infrastructure supply. This partly reflects a recognised skills shortage in Engineering and the Physical Sciences. The proposed EPSRC funded Centre for Doctoral Training (CDT) aims to produce the next generation of engineers and scientists needed to meet the challenge of providing Sustainable Infrastructure Systems critical for maintaining UK competitiveness. The CDT will focus on Energy, Water, and Transport in the priority areas of National Infrastructure Systems, Sustainable Built Environment, and Water. Future Engineers and Scientists must have a wide range of transferable and technical skills and be able to collaborate at the interdisciplinary interface. Key attributes include leadership, the ability to communicate and work as a part of a large multidisciplinary network, and to think outside the box to develop creative and innovative solutions to novel problems. The CDT will be based on a cohort ethos to enhance educational efficiency by integrating best practices of traditional longitudinal top-down / bottom-up learning with innovative lateral knowledge exchange through peer-to-peer "coaching" and outreach. To inspire the next generation of engineers and scientists an outreach supply chain will link the focal student within his/her immediate cohort with: 1) previous and future cohorts; 2) other CDTs within and outside the University of Southampton; 3) industry; 4) academics; 5) the general public; and 6) Government. The programme will be composed of a first year of transferable and technical taught elements followed by 3 years of dedicated research with the opportunity to select further technical modules, and/or spend time in industry, and experience international training placements. Development of expertise will culminate in an individual project aligned to the relevant research area where the skills acquired are practiced. Cohort building and peer-to-peer learning will be on-going throughout the programme, with training in leadership, communication, and problem solving delivered through initiatives such as a team building residential course; a student-led seminar series and annual conference; a Group Design Project (national or international); and industry placement. The cohort will also mentor undergraduates and give outreach presentations to college students, school children, and other community groups. All activities are designed to facilitate the creation of a larger network. Students will be supported throughout the programme by their supervisory team, intensively at the start, through weekly tutorials during which a technical skills gap analysis will be conducted to inform future training needs. Benefitting from the £120M investment in the new Engineering Campus at the Boldrewood site the CDT will provide a high class education environment with access to state-of-the-art computer and experimental facilities, including large-scale research infrastructure, e.g. hydraulics laboratories with large flumes and wave tanks which are unparalleled in the UK. Students will benefit from the co-location of engineering, education, and research alongside industry users through this initiative. To provide cohort, training, inspiration and research legacies the CDT will deliver: 1) Sixty doctoral graduates in engineering and science with a broad understanding of the challenges faced by the Energy, Water, and Transport industries and the specialist technical skills needed to solve them. They will be ambitious research, engineering, industrial, and political leaders of the future with an ability to demonstrate creativity and innovation when working as part of teams. 2) A network of home-grown talent, comprising of several CDT cohorts, with a greater capability to solve the "Big Problems" than individuals, or small isolated clusters of expertise, typically generated through traditional training programmes.

  • Funder: UKRI Project Code: EP/L016389/1
    Funder Contribution: 3,390,300 GBP
    Partners: UQ, Granta Design (United Kingdom), Jonkoping University, PTC Inc, Cast Metals Federation, Institute of Cast Metals Engineers, EADS Airbus, SEVERN TRENT WATER, Kyoto University, UBC...

    EPSRC's EngD was successfully modernised by WMG in 2011 with radical ideas on how high-level skills should be implemented to address the future needs of manufacturing companies within the UK and globally. In a continual rise to the challenge of a low environmental impact future, our new proposed Centre goes a step further, delivering a future generation of manufacturing business leaders with high level know-how and research experience that is essential to compete in a global environment defined by high impact and low carbon. Our proposed Centre spans the area of Sustainable Materials and Manufacturing. It will cover a wide remit of activity necessary to bring about long term real world manufacturing impacts in critical UK industries. We will focus upon novel research areas including the harnessing of biotechnology in manufacturing, sustainable chemistry, resource efficient manufacturing and high tech, low resource approaches to manufacturing. We will also develop innovative production processes that allow new feedstocks to be utilised, facilitate dematerialisation and light weighting of existing approaches or enable new products to be made. Research will be carried into areas including novel production technologies, additive layer manufacturing, net shape and near-net shape manufacturing. We will further deliver materials technologies that allow the substitution of traditional materials with novel and sustainable alternatives or enable the utilisation of materials with greater efficiency in current systems. We will also focus upon reducing the inputs (e.g. energy and water) and impacting outputs (e.g. CO2 and effluents) through innovative process and product design and value recovery from wastes. Industry recognises there is an increasing and time-critical need to turn away from using non-sustainable manufacturing feed-stocks and soon we will need to move from using processes that are perceived publically, and known scientifically, to be environmentally detrimental if we are to sustain land/water resources and reduce our carbon footprint. To achieve this, UK PLC needs to be more efficient with its resources, developing a more closed-loop approach to resource use in manufacturing whilst reducing the environmental impact of associated manufacturing processes. We will need to train a whole new generation of doctoral level students capable of working across discipline and cultural boundaries who, whilst working with industry on relevant TRL 1-5 research, can bring about these long term changes. Our Centre will address industrially challenging issues that enable individuals and their sponsoring companies to develop and implement effective low environmental impact solutions that benefit the 'bottom line'. Research achievements and enhanced skills capabilities in Sustainable Materials and Manufacturing will help insure businesses against uncertainty in the supply of materials and price volatility in global markets and enable them to use their commitment to competitively differentiate themselves.

search
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
8 Projects, page 1 of 1
  • Funder: UKRI Project Code: EP/L016362/1
    Funder Contribution: 3,527,890 GBP
    Partners: Indian Institute of Technology Guwahati, Cochin University, CAS, ZJOU, HSL, SEU, Scottish and Southern Energy SSE plc, McMaster University, ANSYS UK LIMITED, University of the Witwatersrand...

    The motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.

  • Funder: UKRI Project Code: EP/L016257/1
    Funder Contribution: 2,750,320 GBP
    Partners: University of Huddersfield, University of Bristol, Boeing Co, Messier-Dowty Ltd, University of Sheffield, Sandvik Coromant UK Ltd, NCC, ROLLS-ROYCE PLC, Technicut, EADS Airbus...

    The aim of the centre is to train research engineers with skills and expertise at the forefront of knowledge in machining science. Machining is at the heart of almost all manufacturing processes, ranging from the milling and turning processes used to create parts for the air-craft engines that power the planes we travel on, through to the grinding processes used to shape replacement hip-joints. As we demand more from engineered components, and move to materials such as composites or high strength alloys, their intrinsic strength or complexity as materials makes them harder to machine. This frequently means that machining processes are slower, require more manual interventions, and produce more out of tolerance parts: all these factors result in higher costs. Research into machining science can make a tangible difference to the way in which modern engineering components are produced. For example, recent machining research by the AMRC will be used at Rolls-Royce's new 20,000 square metre factory in Tyne & Wear. This factory will employ over 400 people and make over 2000 engine components per year, for aircraft including the Boeing 786 Dreamliner and the Airbus A380 [1]. Our doctoral training centre will equip research engineers with the skills and expertise that places them at the forefront of machining science. Cohorts of doctoral researchers will each work on an industrially posed machining problem. They will aim to bridge the gap between industry and academia, as they will first research areas of appropriate machining science, before transferring this technology to their sponsor company. Research and training will take place within a collaborative environment, with research engineers based in the Advanced Manufacturing Research Centre (AMRC) in Sheffield, where they will be mentored by academics working at the forefront of machining science, and will have access to some of the latest equipment available. Industrial participation is central to our training vision, where in addition to working on an industrially proposed problem, each research engineer will be co- funded and supervised by industry. We see this interaction as essential to ensure the research and training we provide is timely, and addresses the key challenges posed by UK industry. [1] Rolls-Royce press release, Friday, 21 September 2012. "Rolls-Royce breaks ground for new facility in North East"

  • Funder: UKRI Project Code: EP/L016753/1
    Funder Contribution: 4,940,910 GBP
    Partners: NPL, Wolfson Microelectronics, UT, FHG, Gloucestershire Hospitals NHS Fdn Trust, Spirit Aerosystems, SELENIUM, LTD, SU2P, ST Microelectronics Limited (UK), Qioptiq Ltd...

    We propose a Centre for Doctoral Training in Integrative Sensing and Measurement that addresses the unmet UK need for specialist training in innovative sensing and measurement systems identified by EPSRC priorities the TSB and EPOSS . The proposed CDT will benefit from the strategic, targeted investment of >£20M by the partners in enhancing sensing and measurement research capability and by alignment with the complementary, industry-focused Innovation Centre in Sensor and Imaging Systems (CENSIS). This investment provides both the breadth and depth required to provide high quality cohort-based training in sensing across the sciences, medicine and engineering and into the myriad of sensing applications, whilst ensuring PhD supervision by well-resourced internationally leading academics with a passion for sensor science and technology. The synergistic partnership of GU and UoE with their active sensors-related research collaborations with over 160 companies provides a unique research excellence and capability to provide a dynamic and innovative research programme in sensing and measurement to fuel the development pipeline from initial concept to industrial exploitation.

  • Funder: UKRI Project Code: EP/L015242/1
    Funder Contribution: 5,054,050 GBP
    Partners: NUS, NPL, Google Inc, Hitachi Cambridge Laboratory, Nokia Research Centre, University of London, UNSW, D-Wave Systems Inc, Nature Publishing Group, Swiss Federal Institute of Technology ETH Zürich...

    Quantum technologies promise a transformation of measurement, communication and computation by using ideas originating from quantum physics. The UK was the birthplace of many of the seminal ideas and techniques; the technologies are now ready to translate from the laboratory into industrial applications. Since international companies are already moving in this area, there is a critical need across the UK for highly-skilled researchers who will be the future leaders in quantum technology. Our proposal is driven by the need to train this new generation of leaders. They will need to be equipped to function in a complex research and engineering landscape where quantum physics meets cryptography, complexity and information theory, devices, materials, software and hardware engineering. We propose to train a cohort of leaders to meet these challenges within the highly interdisciplinary research environment provided by UCL, its commercial and governmental laboratory partners. In their first year the students will obtain a background in devices, information and computational sciences through three concentrated modules organized around current research issues. They will complete a team project and a longer individual research project, preparing them for their choice of main research doctoral topic at the end of the year. Cross-cohort training in communication skills, technology transfer, enterprise, teamwork and career planning will continue throughout the four years. Peer to peer learning will be continually facilitated not only by organized cross-cohort activities, but also by the day to day social interaction among the members of the cohort thanks to their co-location at UCL.

  • Funder: UKRI Project Code: EP/L015110/1
    Funder Contribution: 4,041,680 GBP
    Partners: University of Pennsylvania, University of Toronto, SUPA, ANL, Mondelez International, Hitachi Cambridge Laboratory, Element Six Ltd (UK), Cairn Energy Ltd, Accelrys Limited, ILL...

    The Scottish Doctoral Training Centre in Condensed Matter Physics, known as the CM-DTC, is an EPSRC-funded Centre for Doctoral Training (CDT) addressing the broad field of Condensed Matter Physics (CMP). CMP is a core discipline that underpins many other areas of science, and is one of the Priority Areas for this CDT call. Renewal funding for the CM-DTC will allow five more annual cohorts of PhD students to be recruited, trained and released onto the market. They will be highly educated professionals with a knowledge of the field, in depth and in breadth, that will equip them for future leadership in a variety of academic and industrial careers. Condensed Matter Physics research impacts on many other fields of science including engineering, biophysics, photonics, chemistry, and materials science. It is a significant engine for innovation and drives new technologies. Recent examples include the use of liquid crystals for displays including flat-screen and 3D television, and the use of solid-state or polymeric LEDs for power-saving high-illumination lighting systems. Future examples may involve harnessing the potential of graphene (the world's thinnest and strongest sheet-like material), or the creation of exotic low-temperature materials whose properties may enable the design of radically new types of (quantum) computer with which to solve some of the hardest problems of mathematics. The UK's continued ability to deliver transformative technologies of this character requires highly trained CMP researchers such as those the Centre will produce. The proposed training approach is built on a strong framework of taught lecture courses, with core components and a wide choice of electives. This spans the first two years so that PhD research begins alongside the coursework from the outset. It is complemented by hands-on training in areas such as computer-intensive physics and instrument building (including workshop skills and 3D printing). Some lecture courses are delivered in residential schools but most are videoconferenced live, using the well-established infrastructure of SUPA (the Scottish Universities Physics Alliance). Students meet face to face frequently, often for more than one day, at cohort-building events that emphasise teamwork in science, outreach, transferable skills and careers training. National demand for our graduates is demonstrated by the large number of companies and organisations who have chosen to be formally affiliated with our CDT as Industrial Associates. The range of sectors spanned by these Associates is notable. Some, such as e2v and Oxford Instruments, are scientific consultancies and manufacturers of scientific equipment, whom one would expect to be among our core stakeholders. Less obviously, the list also represents scientific publishers, software houses, companies small and large from the energy sector, large multinationals such as Solvay-Rhodia and Siemens, and finance and patent law firms. This demonstrates a key attraction of our graduates: their high levels of core skills, and a hands-on approach to problem solving. These impart a discipline-hopping ability which more focussed training for specific sectors can complement, but not replace. This breadth is prized by employers in a fast-changing environment where years of vocational training can sometimes be undermined very rapidly by unexpected innovation in an apparently unrelated sector. As the UK builds its technological future by funding new CDTs across a range of priority areas, it is vital to include some that focus on core discipline skills, specifically Condensed Matter Physics, rather than the interdisciplinary or semi-vocational training that features in many other CDTs. As well as complementing those important activities today, our highly trained PhD graduates will be equipped to lay the foundations for the research fields (and perhaps some of the industrial sectors) of tomorrow.

  • Funder: UKRI Project Code: EP/L016273/1
    Funder Contribution: 3,533,530 GBP
    Partners: University of Oulu, UCT, EADS UK Ltd, Pohang University of Science and Techno, FORD MOTOR COMPANY LIMITED, Otto Fuchs KG, Constellium, Defence Science & Tech Lab DSTL, HZG, Novelis Global Technology Centre...

    Metallic materials are used in an enormous range of applications, from everyday objects, such as aluminium drinks cans and copper wiring to highly-specialised, advanced applications such as nickel superalloy turbine blades in jet engines and stainless steel nuclear reactor pressure vessels. Despite advances in the understanding of metallic materials and their manufacture, significant challenges remain. Research in advanced metallic systems helps us to understand how the structure of a material and the way it is processed affects its properties and performance. This knowledge is essential for us to develop the materials needed to tackle current challenges in energy, transport and sustainability. We must learn how to use the earth's resources in a sustainable way, finding alternatives for rare but strategically important elements and increasing how much material we recycle and reuse. This will partly be achieved through developing manufacturing and production processes which use less energy and are less wasteful and through improving product designs or developing and improving the materials we use. In order to deliver these new materials and processes, industry requires a lot more specialists who have a thorough understanding of metallic materials science and engineering coupled with the professional and technical leadership skills to apply this expertise. The EPSRC Centre for Doctoral Training in Advanced Metallic Systems will increase the number of metallurgical specialists, currently in short supply, by training high level physical science and engineering graduates in fundamental materials science and engineering in preparation for doctoral level research on challenging metallic material and manufacturing problems. By working collaboratively with industry, while undertaking a comprehensive programme of professional skills training, our graduates will be equipped to be tomorrow's research leaders, knowledge workers and captains of industry.

  • Funder: UKRI Project Code: EP/L01582X/1
    Funder Contribution: 3,149,530 GBP
    Partners: Buro Happold Limited, University of California, Berkeley, EDF ENERGY NUCLEAR GENERATION LIMITED, Kilbride Group, CEMIG, W J Groundwater Ltd, WESSEX WATER, DFO, CAS, University of Southampton...

    UK economic growth, security, and sustainability are in danger of being compromised due to insufficient infrastructure supply. This partly reflects a recognised skills shortage in Engineering and the Physical Sciences. The proposed EPSRC funded Centre for Doctoral Training (CDT) aims to produce the next generation of engineers and scientists needed to meet the challenge of providing Sustainable Infrastructure Systems critical for maintaining UK competitiveness. The CDT will focus on Energy, Water, and Transport in the priority areas of National Infrastructure Systems, Sustainable Built Environment, and Water. Future Engineers and Scientists must have a wide range of transferable and technical skills and be able to collaborate at the interdisciplinary interface. Key attributes include leadership, the ability to communicate and work as a part of a large multidisciplinary network, and to think outside the box to develop creative and innovative solutions to novel problems. The CDT will be based on a cohort ethos to enhance educational efficiency by integrating best practices of traditional longitudinal top-down / bottom-up learning with innovative lateral knowledge exchange through peer-to-peer "coaching" and outreach. To inspire the next generation of engineers and scientists an outreach supply chain will link the focal student within his/her immediate cohort with: 1) previous and future cohorts; 2) other CDTs within and outside the University of Southampton; 3) industry; 4) academics; 5) the general public; and 6) Government. The programme will be composed of a first year of transferable and technical taught elements followed by 3 years of dedicated research with the opportunity to select further technical modules, and/or spend time in industry, and experience international training placements. Development of expertise will culminate in an individual project aligned to the relevant research area where the skills acquired are practiced. Cohort building and peer-to-peer learning will be on-going throughout the programme, with training in leadership, communication, and problem solving delivered through initiatives such as a team building residential course; a student-led seminar series and annual conference; a Group Design Project (national or international); and industry placement. The cohort will also mentor undergraduates and give outreach presentations to college students, school children, and other community groups. All activities are designed to facilitate the creation of a larger network. Students will be supported throughout the programme by their supervisory team, intensively at the start, through weekly tutorials during which a technical skills gap analysis will be conducted to inform future training needs. Benefitting from the £120M investment in the new Engineering Campus at the Boldrewood site the CDT will provide a high class education environment with access to state-of-the-art computer and experimental facilities, including large-scale research infrastructure, e.g. hydraulics laboratories with large flumes and wave tanks which are unparalleled in the UK. Students will benefit from the co-location of engineering, education, and research alongside industry users through this initiative. To provide cohort, training, inspiration and research legacies the CDT will deliver: 1) Sixty doctoral graduates in engineering and science with a broad understanding of the challenges faced by the Energy, Water, and Transport industries and the specialist technical skills needed to solve them. They will be ambitious research, engineering, industrial, and political leaders of the future with an ability to demonstrate creativity and innovation when working as part of teams. 2) A network of home-grown talent, comprising of several CDT cohorts, with a greater capability to solve the "Big Problems" than individuals, or small isolated clusters of expertise, typically generated through traditional training programmes.

  • Funder: UKRI Project Code: EP/L016389/1
    Funder Contribution: 3,390,300 GBP
    Partners: UQ, Granta Design (United Kingdom), Jonkoping University, PTC Inc, Cast Metals Federation, Institute of Cast Metals Engineers, EADS Airbus, SEVERN TRENT WATER, Kyoto University, UBC...

    EPSRC's EngD was successfully modernised by WMG in 2011 with radical ideas on how high-level skills should be implemented to address the future needs of manufacturing companies within the UK and globally. In a continual rise to the challenge of a low environmental impact future, our new proposed Centre goes a step further, delivering a future generation of manufacturing business leaders with high level know-how and research experience that is essential to compete in a global environment defined by high impact and low carbon. Our proposed Centre spans the area of Sustainable Materials and Manufacturing. It will cover a wide remit of activity necessary to bring about long term real world manufacturing impacts in critical UK industries. We will focus upon novel research areas including the harnessing of biotechnology in manufacturing, sustainable chemistry, resource efficient manufacturing and high tech, low resource approaches to manufacturing. We will also develop innovative production processes that allow new feedstocks to be utilised, facilitate dematerialisation and light weighting of existing approaches or enable new products to be made. Research will be carried into areas including novel production technologies, additive layer manufacturing, net shape and near-net shape manufacturing. We will further deliver materials technologies that allow the substitution of traditional materials with novel and sustainable alternatives or enable the utilisation of materials with greater efficiency in current systems. We will also focus upon reducing the inputs (e.g. energy and water) and impacting outputs (e.g. CO2 and effluents) through innovative process and product design and value recovery from wastes. Industry recognises there is an increasing and time-critical need to turn away from using non-sustainable manufacturing feed-stocks and soon we will need to move from using processes that are perceived publically, and known scientifically, to be environmentally detrimental if we are to sustain land/water resources and reduce our carbon footprint. To achieve this, UK PLC needs to be more efficient with its resources, developing a more closed-loop approach to resource use in manufacturing whilst reducing the environmental impact of associated manufacturing processes. We will need to train a whole new generation of doctoral level students capable of working across discipline and cultural boundaries who, whilst working with industry on relevant TRL 1-5 research, can bring about these long term changes. Our Centre will address industrially challenging issues that enable individuals and their sponsoring companies to develop and implement effective low environmental impact solutions that benefit the 'bottom line'. Research achievements and enhanced skills capabilities in Sustainable Materials and Manufacturing will help insure businesses against uncertainty in the supply of materials and price volatility in global markets and enable them to use their commitment to competitively differentiate themselves.