search
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
15 Projects, page 1 of 2

  • Canada
  • 2012-2021
  • UK Research and Innovation
  • 2015

10
arrow_drop_down
  • Funder: UKRI Project Code: NE/K005421/2
    Funder Contribution: 159,248 GBP
    Partners: Newcastle University, Liquid Robotics, AXYS

    Variations in sea level have a great environmental impact. They modulate coastal deposition, erosion and morphology, regulate heat and salt fluxes in estuaries, bays and ground waters, and control the dynamics of coastal ecosystems. Sea level variability has importance for coastal navigation, the building of coastal infrastructure, and the management of waste. The challenges of measuring, understanding and predicting sea level variations take particular relevance within the backdrop of global sea level rise, which might lead to the displacement of hundreds of millions of people by the end of this century. Sea level measurement relies primarily on the use of coastal tide gauges and satellite altimetry. Tide gauges provide sea levels at fine time resolutions (up to one second), but collect data only in coastal areas, and are irregularly distributed, with large gaps in the southern hemisphere and at high latitudes. Satellite altimetry, in contrast, has poor time resolution (ten days or longer), but provides near global coverage at moderate spatial resolutions (10-to-100 kilometres). Altimetric sea level products are problematic near the coast for reasons such as uncertainties in applying sea state bias corrections, errors in coastal tidal models, and large geoid gradients. The complicated shoreline geometry means that the raw altimeter data have to either undergo special transformations to provide more reliable measurements of sea level or be rejected. Developments in GPS measurements from buoys are now making it possible to determine sea surface heights with accuracy comparable to that of altimetry. In combination with coastal tide gauges, GPS buoys could be used as the nodes of a global sea level monitoring network extending beyond the coast. However, GPS buoys have several downsides. They are difficult and expensive to deploy, maintain, and recover, and, like conventional tide gauges, provide time series only at individual points in the ocean. This proposal focuses on the development of a unique system that overcomes these shortcomings. We propose a technology-led project to integrate Global Navigation Satellite Systems (GNSS i.e. encompassing GPS, GLONASS and, possibly, Galileo) technology with a state-of-the-art, unmanned surface vehicle: a Wave Glider. The glider farms the ocean wave field for propulsion, uses solar power to run on board equipment, and uses satellite communications for remote navigation and data transmission. A Wave Glider equipped with a high-accuracy GNSS receiver and data logger is effectively a fully autonomous, mobile, floating tide gauge. Missions and routes can be preprogrammed as well as changed remotely. Because the glider can be launched and retrieved from land or from a small boat, the costs associated with deployment, maintenance and recovery of the GNSS Wave Glider are comparatively small. GNSS Wave Glider technology promises a level of versatility well beyond that of existing ways of measuring sea levels. Potential applications of a GNSS Wave Glider include: 1) measurement of mean sea level and monitoring of sea level variations worldwide, 2) linking of offshore and onshore vertical datums, 3) calibration of satellite altimetry, notably in support of current efforts to reinterpret existing altimetric data near the coast, but also in remote and difficult to access areas, 4) determination of regional geoid variations, 5) ocean model improvement. The main thrust of this project is to integrate a state-of-the-art, geodetic-grade GNSS receiver and logging system with a Wave Glider recently acquired by NOC to create a mobile and autonomous GNSS-based tide gauge. By the end of the project, a demonstrator GNSS Wave Glider will be available for use by NOC and the UK marine community. The system performance will be validated against tide gauge data. Further tests will involve the use of the GNSS Wave Glider to calibrate sea surface heights and significant wave heights from Cryosat-2.

  • Funder: UKRI Project Code: EP/M003159/1
    Funder Contribution: 508,163 GBP
    Partners: NTU, Shell Global Solutions UK, University of Cambridge, University of Toronto, CECEP DADI, Yunnan Institute of Building Materials, Premier Magnesia, Lehmann & Voss, China Three Gorges Corporation, Federal University of Minas Gerais...

    Material innovations focussing on delivery and sustainability are key as our global efforts intensify in the development of a secure and sustainable future energy landscape. Many infrastructure-related material challenges have emerged as a result of the need (i) to explore offshore marine environments for wind power generation, (ii) for deeper and more complex underground wellbore systems for new oil & gas explorations, (iii) for robust containment and shielding structures for new nuclear power plants and (iv) for larger dam structures for future hydropower generation. Our vision for this proposal is to build a world leading and long lasting partnership between academics in the UK and China, integrated with industrial partners and other world leading academic groups around the world, to collectively address some of those construction material challenges with a focus on sustainability. The commonality in the assembled group is our interest and expertise in exploring potentials for magnesia-bearing construction materials in solving some of those new challenges, by either providing completely new solutions or enhanced solutions to existing material systems. This is a unique area to China and the UK where there is significant complementary expertise in the different grades of and applications for magnesia. The project consortium from the University of Cambridge, University College London, Chongqing University and Nanjing Tech University has the required interdisciplinary mix of materials, structural and geotechnical engineers, with world leading unique expertise in magnesia-based construction materials. The intention is to share and advance our global understanding of the performance of those proposed materials, road map future research and commercial needs and identify the ideal applications in our future energy infrastructures where most performance impact and sustainability benefits can be achieved. The proposed focusses two main areas of research. The first is the technical advantages and benefits that magnesia can provide to existing cement systems. This includes (i) its use as an expansive additive for large mass concrete constructions e.g. dams and nuclear installations, (ii) its role in magnesium phosphate cements for the developing of low pH cements suitable for nuclear waste applications and (iii) its role in advancing the development of alkali activated cements by providing low shrinkage and corrosion resistance. The second is the delivery of sustainable MgO production processes that focus on the use of both mineral and reject brine resources. An integral part of this project will be the knowledge transfer activities and collaboration with industry and other relevant research centres around the world. An overarching aspect of the proposed research is the mapping out of the team's capabilities and the integration of expertise and personnel exchange to ensure maximum impact. This will ensure that the research is at the forefront of the global pursuit for a sustainable future energy infrastructure and will ensure that maximum impact is achieved. The consortium plans to act as a global hub to provide a national and international platform for facilitating dialogue and collaboration to enhance the global knowledge economy.

  • Funder: UKRI Project Code: NE/M017540/1
    Funder Contribution: 333,858 GBP
    Partners: GSC, Osaka Institute of Technology, MBARI, Utrecht University, NCU, BIO, Fugro (United Kingdom), National Sun Yat-sen University, BU, NOC...

    Turbidity currents are the volumetrically most import process for sediment transport on our planet. A single submarine flow can transport ten times the annual sediment flux from all of the world's rivers, and they form the largest sediment accumulations on Earth (submarine fans). These flows break strategically important seafloor cable networks that carry > 95% of global data traffic, including the internet and financial markets, and threaten expensive seabed infrastructure used to recover oil and gas. Ancient flows form many deepwater subsurface oil and gas reservoirs in locations worldwide. It is sobering to note quite how few direct measurements we have from submarine flows in action, which is a stark contrast to other major sediment transport processes such as rivers. Sediment concentration is the most fundamental parameter for documenting what turbidity currents are, and it has never been measured for flows that reach submarine fans. How then do we know what type of flow to model in flume tanks, or which assumptions to use to formulate numerical or analytical models? There is a compelling need to monitor flows directly if we are to make step changes in understanding. The flows evolve significantly, such that source to sink data is needed, and we need to monitor flows in different settings because their character can vary significantly. This project will coordinate and pump-prime international efforts to monitor turbidity currents in action. Work will be focussed around key 'test sites' that capture the main types of flows and triggers. The objective is to build up complete source-to-sink information at key sites, rather than producing more incomplete datasets in disparate locations. Test sites are chosen where flows are known to be active - occurring on annual or shorter time scale, where previous work provides a basis for future projects, and where there is access to suitable infrastructure (e.g. vessels). The initial test sites include turbidity current systems fed by rivers, where the river enters marine or freshwater, and where plunging ('hyperpycnal') river floods are common or absent. They also include locations that produce powerful flows that reach the deep ocean and build submarine fans. The project is novel because there has been no comparable network established for monitoring turbidity currents Numerical and laboratory modelling will also be needed to understand the significance of the field observations, and our aim is also to engage modellers in the design and analysis of monitoring datasets. This work will also help to test the validity of various types of model. We will collect sediment cores and seismic data to study the longer term evolution of systems, and the more infrequent types of flow. Understanding how deposits are linked to flows is important for outcrop and subsurface oil and gas reservoir geologists. This proposal is timely because of recent efforts to develop novel technology for monitoring flows that hold great promise. This suite of new technology is needed because turbidity currents can be extremely powerful (up to 20 m/s) and destroy sensors placed on traditional moorings on the seafloor. This includes new sensors, new ways of placing those sensors above active flows or in near-bed layers, and new ways of recovering data via autonomous gliders. Key preliminary data are lacking in some test sites, such as detailed bathymetric base-maps or seismic datasets. Our final objective is to fill in key gaps in 'site-survey' data to allow larger-scale monitoring projects to be submitted in the future. This project will add considerable value to an existing NERC Grant to monitor flows in Monterey Canyon in 2014-2017, and a NERC Industry Fellowship hosted by submarine cable operators. Talling is PI for two NERC Standard Grants, a NERC Industry Fellowship and NERC Research Programme Consortium award. He is also part of a NERC Centre, and thus fulfils all four criteria for the scheme.

  • Funder: UKRI Project Code: EP/M02797X/1
    Funder Contribution: 96,770 GBP
    Partners: University of Waterloo (Canada), LSE, Cornell University

    The proposed research contributes to fundamental topics in Combinatorial Optimisation, aiming to devise strongly polynomial algorithms for new classes of linear and nonlinear optimisation problems. The notion of polynomial-time complexity, introduced in the 1970s, is a standard way to capture computational efficiency of a wide variety of algorithms. Strongly polynomial-time algorithms give a natural strengthening of this notion: the number of arithmetic operations should not depend on numerical parameters such as costs or capacities in the problem description, but only on the number of such parameters. Strongly polynomial algorithms are known for many important optimisation problems. However, it remains an outstanding open problem to devise such an algorithm for a very fundamental optimisation problem: Linear Programming. The most important goal of the proposal is to develop a strongly polynomial algorithm for linear programs with at most two nonzero entries per column. The problem is equivalent to minimum-cost generalised flows, a classical model in the theory of network flows. Finding a strongly polynomial algorithm was a longstanding open question even for the special case of flow maximisation, resolved by the applicant in a recent paper. Further goals of the proposal include strongly polynomial algorithms for related nonlinear optimisation problems. Nonlinear convex network flow models have important applications for market equilibrium computation in mathematical economics. Very few nonlinear problems are known to admit strongly polynomial algorithms. The proposal aims for a systematic study of such problems, and will also contribute to the understanding of computational aspects of market equilibrium models.

  • Funder: UKRI Project Code: NE/M013693/1
    Funder Contribution: 272,801 GBP
    Partners: LANL, ECMWF, SFU, University of Reading, Met Office

    This project is about using moving meshes - r-adaptivity - to improve the predictive power of atmospheric flow simulations, which are used in the fields of numerical weather prediction and climate modelling. When the atmosphere is simulated on a computer, this is done by dividing the sphere into cells which are arranged in a mesh. There is a conflict between the need for accuracy, which requires smaller (and hence more) cells, and computational efficiency, which increases with the number of cells. A reasonable question to ask is: for a given amount of accuracy, what size of cells do I need? The answer can be provided mathematically, but it depends on what is actually happening in the atmosphere simulation. Much smaller cells are required in the regions of smaller scale features such as atmospheric fronts, cyclones, jets, convective cells etc. It then seems like a waste to choose the same cell size all over the globe even in regions where these features are absent. An attractive idea is to try to stretch, deform and move the mesh around so that smaller cells are used in the regions of small scale features, and larger cells are used elsewhere. This would mean that a better compromise can be made between accuracy and computational efficiency, thus improving predictive power for the same resource. This idea has been used successfully in many engineering applications, and the goal of this project is to transmit this technology to atmosphere simulation, where it can be used by meteorologists and climate scientists to take their science forward. There are, however, a number of challenging aspects. Efficient mesh movement algorithms have not previously been developed for the sphere geometry which is needed for global atmosphere simulations. There is the question of how to detect where the mesh should be moved to. It is also the case that it is very challenging to design stable and accurate numerical algorithms for simulating the atmosphere, and these must be adapted to remain stable and accurate under mesh movement. All of these questions and issues will be addressed in this project.

  • Funder: UKRI Project Code: NE/M017028/1
    Funder Contribution: 766,686 GBP
    Partners: University of Guelph, University of Salford, WU

    Soils provide many functions for humans, including the storage of carbon and nutrient cycling, which are crucial for the production of food and mitigation of climate change. However, there is much concern that soils, and the functions that they provide, are being threatened by a range of pressures, including intensive farming methods and increased frequency of extreme climatic events, such as drought. Not only do these disturbances pose an immediate threat to the functioning of soils, but they could also impair their ability to resist and recover from further stresses that come in the future. Our project will tackle this problem by addressing two general questions: first, what makes a soil able to withstand and recover from disturbance events, such as drought, and, second how can we use this knowledge to ensure soils can buffer disturbances in the future? These are questions that have puzzled soil scientists for many years, but so far, remain unresolved. An area that offers much promise, however, in tackling this issue is food web ecology. Food webs are the networks of interactions describing who eats whom amongst the myriad organisms within an ecosystem. And in soil, they are the engine that drives the very processes of nutrient cycling and energy flow on which the functioning of soil and the terrestrial ecosystems they support, depend. It has been proposed for many years, but so far not fully tested in soil, that simple food webs are less able to withstand and recover from disturbance events, such as drought than complex ones. We want to test this theory in soil, which harbours some of the most complex, but also sensitive, food webs on Earth. We test the idea, through experiments and models, that the ability of a soil to withstand, recover and adapt to disturbance events depends on the architecture and diversity of the soil food web, which governs the rate of transfer of nutrients and energy through the plant-soil system. We also propose that soil disturbances associated with intensive land use, such as trampling and fertiliser addition, erode the very food web structures that make the soil system stable, thereby reducing the ability of soil to resist and recover from future disturbances, such as extreme weather events. We will also resolve what makes a food web stable, and test the roles of different types of organisms in soil, such as mycorrhizal fungi, which we believe play a major role. And finally, we will develop new models to help us better predict how soils will respond to future threats and to guide management decisions on sustainable soil management in a rapidly changing world. These question are at the heart of the NERC Soil Security programme which seeks to resolve what controls the ability of soils and their functions to resist, recover and ultimately adapt, to perturbations, such as those caused by land use and extreme climatic events.

  • Funder: UKRI Project Code: EP/M01052X/1
    Funder Contribution: 731,953 GBP
    Partners: University of Edinburgh, University of Kent, UMCP, RU, SFU

    Condensed matter physics has developed a relatively complete theory of common phases in materials leading to many technologically important devices including electronic screens, memory storage, and switching devices. Landau, or mean-field theory, has provided a framework to model, predict, and understand phases and transitions in a surprisingly diverse variety of materials and also dynamical systems. While these conventional ground states have proven technologically important and the underlying theory represents a major success for scientists, these phases have proven incredibly difficult to suppress and often emerge when new materials properties are sought or engineered. To discover novel phases that will lead to a new materials revolution, these common phases need to be suppressed to allow exotic and unconventional properties to emerge. The most common vehicle to turn off conventional phases in materials has been through the introduction of disorder through chemical doping resulting in strong random fields. Many important theories have been formulated and tested to describe the effects of random fields and in particular to account for the fine balance between surface and bulk free energy. However, the use of disorder has proved limiting as properties are often templated into the material and not directly controllable and also the resulting ground state of the material is difficult to understand. Another route, which has more recently been explored in the last decade, to suppress conventional phases is by introducing strong fluctuations. While this can be trivially done with temperature, new phases have emerged by studying quantum systems where the physics are governed by quantum mechanics and the Heisenberg uncertainty principle. The study of quantum systems has resulted in the discovery of many new phases of matter including high temperature superconductors and also quantum spin-liquids where the magnetism is dynamic at any temperature. A limitation of quantum fluctuations is that the properties do not carry over directly to ferroelectric based systems and also multiferroics where magnetic and structural properties are strongly coupled. Also, owing to the strong fluctuating nature of the ground state, the properties have not been found to be easily tunable limiting immediate use for applications. This proposal aims to therefore take a different route by studying classically frustrated systems where a large ground state degeneracy is introduced naturally through the lattice and quantum mechanical effects are small. Emphasis will be placed on lattices based upon a triangular geometry. The lack of strong fluctuations (that exists in quantum systems) provides the ability to controllably tune between different ground states making this route a potential means of creating new switching devices or novel memory storage systems. The proposal aims to investigate classically frustrated magnets and ferroelectrics. These systems can be described within a common framework and will be studied using scattering techniques to provide a bulk real space image of the ground state. The properties will be tuned with magnetic and electric fields supplying a direct route for discovering a new route towards technologically applicable materials. The combined approach of investigating ferroelectrics and magnets will result in a complete understanding applicable to immediate industrial applications. These new materials will lead to the discovery of new phases including new high temperature multiferroics, classical spin liquids, or localized controllable boundaries or defects.

  • Funder: UKRI Project Code: NE/N006739/1
    Funder Contribution: 31,052 GBP
    Partners: University of Edinburgh, University of Pennsylvania, University of Toronto, UiO

    Parasitism is a widespread phenomenon in the natural world, with dramatic consequences for hosts, parasites, and their communities. There are over 3,000 described parasitic plant species, including mistletoes, the important grassland plant Rhinanthus, and the agricultural pest Striga. A particularly interesting, yet poorly studied group, are the facultative hemiparasites-which can grow and reproduce independent of a host, but grow more vigorously after host attachment. Facultative hemiparasitism represents a remarkably flexible growing strategy, which has largely been overlooked in preference of studies of obligate parasites-organisms which require a host to complete their lifecycle. This project investigates a case study of facultative hemiparasitism, from an evolutionary genetic perspective. The genus Euphrasia contains approximately 300 species, all of which are facultative hemiparasites. This proposal will make progress towards using this genus as a study system for investigating the evolutionary consequences of facultative hemiparasitism, on two fronts. Firstly, it will provide the funds to test emerging genomic approaches, develop new protocols, and produce preliminary data, required for ongoing research in Euphrasia. This will include testing a new chloroplast genome enrichment approach, applying a tissue-specific RNA sequencing method, and the development of a draft whole genome sequence. These resources will be essential for future work identifying loci involved in the evolution of facultative hemiparasites, and testing whether plant parasites are a vector for adaptive horizontal gene transfer. Secondly, this proposal will develop an international collaboration between a UK researcher in plant evolutionary genomics, the world expert in plant parasitism, a leader in plant genomics, and an international expert in the biology of Euphrasia. Such an international collaboration draws on the long history of research of parasitic plants in the USA, as well as the knowledge of Euphrasia biology centred in mainland Europe, to tackle questions about hemiparasitism in an integrated fashion. An increased understanding of plant parasitism will greatly benefit many areas of research, including evolutionary biology, plant biology, parasitology, and genome biology. In particular, understanding genomic changes associated with parasitism will be informative for researchers interested in the genetic basis of major life history transitions, while an understanding of transcriptional changes during host attachment will demonstrate a dramatic example of gene expression changes in the life of an organism. More generally, the identification of common loci underlying parasitic growth across diverse plant parasites, will facilitate the development of genetic tools to tackle parasitic plants that grow as agricultural pests.

  • Funder: UKRI Project Code: EP/M010643/1
    Funder Contribution: 403,977 GBP
    Partners: University of Warwick, University of Montreal

    The global demand for smaller and more energy efficient devices has been sustained by a steady decrease in the scale on which silicon microelectronics can be manufactured, from 65nm processes in the mid 2000s to 14nm in the very latest Intel processors. To continue this trend beyond the mid 2020s devices with dimensions of just 1-2nm will be required, likely using alternatives to silicon. In this regime, the cross section of a wire might be no more than 2x2 or 3x3 atoms across, where the relevant materials physics is dominated by surface and confinement effects leading to dramatically different structural and electronic properties to the corresponding bulk material. Such wires can be formed by crystallisation of a molten salt within carbon nanotubes (CNTs) of "Buckytubes", leading to the smallest cross section nano crystals possible, sometimes referred to as Feynman crystals. Research into the fundamental materials physics of these CNT-encapsulated structures is still in its infancy, with UK experimentalists leading the way. Particularly exciting recent work by one of the applicants (Sloan) has demonstrated the possibility of these wires undergoing transitions between nano-crystalline structures with markedly different properties, in response to bending strain in the CNT. These "phase change" properties open the way for nanoscale electromechanical switches and non-volatile memory, as well as providing a playground for fundamental studies of phase changes at the smallest length scale possible in a material. Our aim with the current project, inspired by these results, is to develop a computational modelling capability to aid in interpretation of experiments, understand the origin of the phase change behaviour, and guide our experimental colleagues toward compounds with potentially advantageous properties. Counterintuitively, due to a reduction in symmetry, the computational expense of simulating nanowires can be more demanding when compared to bulk crystals. We will address the limitations of currently available modelling tools when applied to these systems. This will involve significant modifications to existing software and a rigorous study of the various approximations one might employ to increase the tractability of simulations. We will apply cutting-edge methods in structure prediction to these systems, a non-trivial exercise due to the possibility wires with non-crystalline (e.g. helical) symmetry, and connect directly to relevant experiments by computing spectra related to the encapsulated wire's electronic and vibrational properties. Finally, we will study the thermodynamics and kinetics of nano-crystalline phase change, developing an understanding of when and how rapidly structural changes are affected to assess the utility of this mechanism for device applications.

  • Funder: UKRI Project Code: NE/M021025/1
    Funder Contribution: 1,473,360 GBP
    Partners: University of Liège, LSU, GFZ Potsdam - Geosciences, Chiba University, Utrecht University, BYG.DTU, University of Bristol, University of Copenhagen, University of Alberta, Woods Hole Oceanographic Inst...

    Concerns are growing about how much melting occurs on the surface of the Greenland Ice Sheet (GrIS), and how much this melting will contribute to sea level rise (1). It seems that the amount of melting is accelerating and that the impact on sea level rise is over 1 mm each year (2). This information is of concern to governmental policy makers around the world because of the risk to viability of populated coastal and low-lying areas. There is currently a great scientific need to predict the amount of melting that will occur on the surface of the GrIS over the coming decades (3), since the uncertainties are high. The current models which are used to predict the amount of melting in a warmer climate rely heavily on determining the albedo, the ratio of how reflective the snow cover and the ice surface are to incoming solar energy. Surfaces which are whiter are said to have higher albedo, reflect more sunlight and melt less. Surfaces which are darker adsorb more sunlight and so melt more. Just how the albedo varies over time depends on a number of factors, including how wet the snow and ice is. One important factor that has been missed to date is bio-albedo. Each drop of water in wet snow and ice contains thousands of tiny microorganisms, mostly algae and cyanobacteria, which are pigmented - they have a built in sunblock - to protect them from sunlight. These algae and cyanobacteria have a large impact on the albedo, lowering it significantly. They also glue together dust particles that are swept out of the air by the falling snow. These dust particles also contain soot from industrial activity and forest fires, and so the mix of pigmented microbes and dark dust at the surface produces a darker ice sheet. We urgently need to know more about the factors that lead to and limit the growth of the pigmented microbes. Recent work by our group in the darkest zone of the ice sheet surface in the SW of Greenland shows that the darkest areas have the highest numbers of cells. Were these algae to grow equally well in other areas of the ice sheet surface, then the rate of melting of the whole ice sheet would increase very quickly. A major concern is that there will be more wet ice surfaces for these microorganisms to grow in, and for longer, during a period of climate warming, and so the microorganisms will grow in greater numbers and over a larger area, lowering the albedo and increasing the amount of melt that occurs each year. The nutrient - plant food - that the microorganisms need comes from the ice crystals and dust on the ice sheet surface, and there are fears that increased N levels in snow and ice may contribute to the growth of the microorganisms. This project aims to be the first to examine the growth and spread of the microorganisms in a warming climate, and to incorporate biological darkening into models that predict the future melting of the GrIS. References 1. Sasgen I and 8 others. Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 333-334, 293-303(2012). 2. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503, doi:10.1029/2011gl046583 (2011). 3. Milne, G. A., Gehrels, W. R., Hughes, C. W. & Tamisiea, M. E. Identifying the causes of sea-level change. Nature Geosci 2, 471-478 (2009).

search
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
15 Projects, page 1 of 2
  • Funder: UKRI Project Code: NE/K005421/2
    Funder Contribution: 159,248 GBP
    Partners: Newcastle University, Liquid Robotics, AXYS

    Variations in sea level have a great environmental impact. They modulate coastal deposition, erosion and morphology, regulate heat and salt fluxes in estuaries, bays and ground waters, and control the dynamics of coastal ecosystems. Sea level variability has importance for coastal navigation, the building of coastal infrastructure, and the management of waste. The challenges of measuring, understanding and predicting sea level variations take particular relevance within the backdrop of global sea level rise, which might lead to the displacement of hundreds of millions of people by the end of this century. Sea level measurement relies primarily on the use of coastal tide gauges and satellite altimetry. Tide gauges provide sea levels at fine time resolutions (up to one second), but collect data only in coastal areas, and are irregularly distributed, with large gaps in the southern hemisphere and at high latitudes. Satellite altimetry, in contrast, has poor time resolution (ten days or longer), but provides near global coverage at moderate spatial resolutions (10-to-100 kilometres). Altimetric sea level products are problematic near the coast for reasons such as uncertainties in applying sea state bias corrections, errors in coastal tidal models, and large geoid gradients. The complicated shoreline geometry means that the raw altimeter data have to either undergo special transformations to provide more reliable measurements of sea level or be rejected. Developments in GPS measurements from buoys are now making it possible to determine sea surface heights with accuracy comparable to that of altimetry. In combination with coastal tide gauges, GPS buoys could be used as the nodes of a global sea level monitoring network extending beyond the coast. However, GPS buoys have several downsides. They are difficult and expensive to deploy, maintain, and recover, and, like conventional tide gauges, provide time series only at individual points in the ocean. This proposal focuses on the development of a unique system that overcomes these shortcomings. We propose a technology-led project to integrate Global Navigation Satellite Systems (GNSS i.e. encompassing GPS, GLONASS and, possibly, Galileo) technology with a state-of-the-art, unmanned surface vehicle: a Wave Glider. The glider farms the ocean wave field for propulsion, uses solar power to run on board equipment, and uses satellite communications for remote navigation and data transmission. A Wave Glider equipped with a high-accuracy GNSS receiver and data logger is effectively a fully autonomous, mobile, floating tide gauge. Missions and routes can be preprogrammed as well as changed remotely. Because the glider can be launched and retrieved from land or from a small boat, the costs associated with deployment, maintenance and recovery of the GNSS Wave Glider are comparatively small. GNSS Wave Glider technology promises a level of versatility well beyond that of existing ways of measuring sea levels. Potential applications of a GNSS Wave Glider include: 1) measurement of mean sea level and monitoring of sea level variations worldwide, 2) linking of offshore and onshore vertical datums, 3) calibration of satellite altimetry, notably in support of current efforts to reinterpret existing altimetric data near the coast, but also in remote and difficult to access areas, 4) determination of regional geoid variations, 5) ocean model improvement. The main thrust of this project is to integrate a state-of-the-art, geodetic-grade GNSS receiver and logging system with a Wave Glider recently acquired by NOC to create a mobile and autonomous GNSS-based tide gauge. By the end of the project, a demonstrator GNSS Wave Glider will be available for use by NOC and the UK marine community. The system performance will be validated against tide gauge data. Further tests will involve the use of the GNSS Wave Glider to calibrate sea surface heights and significant wave heights from Cryosat-2.

  • Funder: UKRI Project Code: EP/M003159/1
    Funder Contribution: 508,163 GBP
    Partners: NTU, Shell Global Solutions UK, University of Cambridge, University of Toronto, CECEP DADI, Yunnan Institute of Building Materials, Premier Magnesia, Lehmann & Voss, China Three Gorges Corporation, Federal University of Minas Gerais...

    Material innovations focussing on delivery and sustainability are key as our global efforts intensify in the development of a secure and sustainable future energy landscape. Many infrastructure-related material challenges have emerged as a result of the need (i) to explore offshore marine environments for wind power generation, (ii) for deeper and more complex underground wellbore systems for new oil & gas explorations, (iii) for robust containment and shielding structures for new nuclear power plants and (iv) for larger dam structures for future hydropower generation. Our vision for this proposal is to build a world leading and long lasting partnership between academics in the UK and China, integrated with industrial partners and other world leading academic groups around the world, to collectively address some of those construction material challenges with a focus on sustainability. The commonality in the assembled group is our interest and expertise in exploring potentials for magnesia-bearing construction materials in solving some of those new challenges, by either providing completely new solutions or enhanced solutions to existing material systems. This is a unique area to China and the UK where there is significant complementary expertise in the different grades of and applications for magnesia. The project consortium from the University of Cambridge, University College London, Chongqing University and Nanjing Tech University has the required interdisciplinary mix of materials, structural and geotechnical engineers, with world leading unique expertise in magnesia-based construction materials. The intention is to share and advance our global understanding of the performance of those proposed materials, road map future research and commercial needs and identify the ideal applications in our future energy infrastructures where most performance impact and sustainability benefits can be achieved. The proposed focusses two main areas of research. The first is the technical advantages and benefits that magnesia can provide to existing cement systems. This includes (i) its use as an expansive additive for large mass concrete constructions e.g. dams and nuclear installations, (ii) its role in magnesium phosphate cements for the developing of low pH cements suitable for nuclear waste applications and (iii) its role in advancing the development of alkali activated cements by providing low shrinkage and corrosion resistance. The second is the delivery of sustainable MgO production processes that focus on the use of both mineral and reject brine resources. An integral part of this project will be the knowledge transfer activities and collaboration with industry and other relevant research centres around the world. An overarching aspect of the proposed research is the mapping out of the team's capabilities and the integration of expertise and personnel exchange to ensure maximum impact. This will ensure that the research is at the forefront of the global pursuit for a sustainable future energy infrastructure and will ensure that maximum impact is achieved. The consortium plans to act as a global hub to provide a national and international platform for facilitating dialogue and collaboration to enhance the global knowledge economy.

  • Funder: UKRI Project Code: NE/M017540/1
    Funder Contribution: 333,858 GBP
    Partners: GSC, Osaka Institute of Technology, MBARI, Utrecht University, NCU, BIO, Fugro (United Kingdom), National Sun Yat-sen University, BU, NOC...

    Turbidity currents are the volumetrically most import process for sediment transport on our planet. A single submarine flow can transport ten times the annual sediment flux from all of the world's rivers, and they form the largest sediment accumulations on Earth (submarine fans). These flows break strategically important seafloor cable networks that carry > 95% of global data traffic, including the internet and financial markets, and threaten expensive seabed infrastructure used to recover oil and gas. Ancient flows form many deepwater subsurface oil and gas reservoirs in locations worldwide. It is sobering to note quite how few direct measurements we have from submarine flows in action, which is a stark contrast to other major sediment transport processes such as rivers. Sediment concentration is the most fundamental parameter for documenting what turbidity currents are, and it has never been measured for flows that reach submarine fans. How then do we know what type of flow to model in flume tanks, or which assumptions to use to formulate numerical or analytical models? There is a compelling need to monitor flows directly if we are to make step changes in understanding. The flows evolve significantly, such that source to sink data is needed, and we need to monitor flows in different settings because their character can vary significantly. This project will coordinate and pump-prime international efforts to monitor turbidity currents in action. Work will be focussed around key 'test sites' that capture the main types of flows and triggers. The objective is to build up complete source-to-sink information at key sites, rather than producing more incomplete datasets in disparate locations. Test sites are chosen where flows are known to be active - occurring on annual or shorter time scale, where previous work provides a basis for future projects, and where there is access to suitable infrastructure (e.g. vessels). The initial test sites include turbidity current systems fed by rivers, where the river enters marine or freshwater, and where plunging ('hyperpycnal') river floods are common or absent. They also include locations that produce powerful flows that reach the deep ocean and build submarine fans. The project is novel because there has been no comparable network established for monitoring turbidity currents Numerical and laboratory modelling will also be needed to understand the significance of the field observations, and our aim is also to engage modellers in the design and analysis of monitoring datasets. This work will also help to test the validity of various types of model. We will collect sediment cores and seismic data to study the longer term evolution of systems, and the more infrequent types of flow. Understanding how deposits are linked to flows is important for outcrop and subsurface oil and gas reservoir geologists. This proposal is timely because of recent efforts to develop novel technology for monitoring flows that hold great promise. This suite of new technology is needed because turbidity currents can be extremely powerful (up to 20 m/s) and destroy sensors placed on traditional moorings on the seafloor. This includes new sensors, new ways of placing those sensors above active flows or in near-bed layers, and new ways of recovering data via autonomous gliders. Key preliminary data are lacking in some test sites, such as detailed bathymetric base-maps or seismic datasets. Our final objective is to fill in key gaps in 'site-survey' data to allow larger-scale monitoring projects to be submitted in the future. This project will add considerable value to an existing NERC Grant to monitor flows in Monterey Canyon in 2014-2017, and a NERC Industry Fellowship hosted by submarine cable operators. Talling is PI for two NERC Standard Grants, a NERC Industry Fellowship and NERC Research Programme Consortium award. He is also part of a NERC Centre, and thus fulfils all four criteria for the scheme.

  • Funder: UKRI Project Code: EP/M02797X/1
    Funder Contribution: 96,770 GBP
    Partners: University of Waterloo (Canada), LSE, Cornell University

    The proposed research contributes to fundamental topics in Combinatorial Optimisation, aiming to devise strongly polynomial algorithms for new classes of linear and nonlinear optimisation problems. The notion of polynomial-time complexity, introduced in the 1970s, is a standard way to capture computational efficiency of a wide variety of algorithms. Strongly polynomial-time algorithms give a natural strengthening of this notion: the number of arithmetic operations should not depend on numerical parameters such as costs or capacities in the problem description, but only on the number of such parameters. Strongly polynomial algorithms are known for many important optimisation problems. However, it remains an outstanding open problem to devise such an algorithm for a very fundamental optimisation problem: Linear Programming. The most important goal of the proposal is to develop a strongly polynomial algorithm for linear programs with at most two nonzero entries per column. The problem is equivalent to minimum-cost generalised flows, a classical model in the theory of network flows. Finding a strongly polynomial algorithm was a longstanding open question even for the special case of flow maximisation, resolved by the applicant in a recent paper. Further goals of the proposal include strongly polynomial algorithms for related nonlinear optimisation problems. Nonlinear convex network flow models have important applications for market equilibrium computation in mathematical economics. Very few nonlinear problems are known to admit strongly polynomial algorithms. The proposal aims for a systematic study of such problems, and will also contribute to the understanding of computational aspects of market equilibrium models.

  • Funder: UKRI Project Code: NE/M013693/1
    Funder Contribution: 272,801 GBP
    Partners: LANL, ECMWF, SFU, University of Reading, Met Office

    This project is about using moving meshes - r-adaptivity - to improve the predictive power of atmospheric flow simulations, which are used in the fields of numerical weather prediction and climate modelling. When the atmosphere is simulated on a computer, this is done by dividing the sphere into cells which are arranged in a mesh. There is a conflict between the need for accuracy, which requires smaller (and hence more) cells, and computational efficiency, which increases with the number of cells. A reasonable question to ask is: for a given amount of accuracy, what size of cells do I need? The answer can be provided mathematically, but it depends on what is actually happening in the atmosphere simulation. Much smaller cells are required in the regions of smaller scale features such as atmospheric fronts, cyclones, jets, convective cells etc. It then seems like a waste to choose the same cell size all over the globe even in regions where these features are absent. An attractive idea is to try to stretch, deform and move the mesh around so that smaller cells are used in the regions of small scale features, and larger cells are used elsewhere. This would mean that a better compromise can be made between accuracy and computational efficiency, thus improving predictive power for the same resource. This idea has been used successfully in many engineering applications, and the goal of this project is to transmit this technology to atmosphere simulation, where it can be used by meteorologists and climate scientists to take their science forward. There are, however, a number of challenging aspects. Efficient mesh movement algorithms have not previously been developed for the sphere geometry which is needed for global atmosphere simulations. There is the question of how to detect where the mesh should be moved to. It is also the case that it is very challenging to design stable and accurate numerical algorithms for simulating the atmosphere, and these must be adapted to remain stable and accurate under mesh movement. All of these questions and issues will be addressed in this project.

  • Funder: UKRI Project Code: NE/M017028/1
    Funder Contribution: 766,686 GBP
    Partners: University of Guelph, University of Salford, WU

    Soils provide many functions for humans, including the storage of carbon and nutrient cycling, which are crucial for the production of food and mitigation of climate change. However, there is much concern that soils, and the functions that they provide, are being threatened by a range of pressures, including intensive farming methods and increased frequency of extreme climatic events, such as drought. Not only do these disturbances pose an immediate threat to the functioning of soils, but they could also impair their ability to resist and recover from further stresses that come in the future. Our project will tackle this problem by addressing two general questions: first, what makes a soil able to withstand and recover from disturbance events, such as drought, and, second how can we use this knowledge to ensure soils can buffer disturbances in the future? These are questions that have puzzled soil scientists for many years, but so far, remain unresolved. An area that offers much promise, however, in tackling this issue is food web ecology. Food webs are the networks of interactions describing who eats whom amongst the myriad organisms within an ecosystem. And in soil, they are the engine that drives the very processes of nutrient cycling and energy flow on which the functioning of soil and the terrestrial ecosystems they support, depend. It has been proposed for many years, but so far not fully tested in soil, that simple food webs are less able to withstand and recover from disturbance events, such as drought than complex ones. We want to test this theory in soil, which harbours some of the most complex, but also sensitive, food webs on Earth. We test the idea, through experiments and models, that the ability of a soil to withstand, recover and adapt to disturbance events depends on the architecture and diversity of the soil food web, which governs the rate of transfer of nutrients and energy through the plant-soil system. We also propose that soil disturbances associated with intensive land use, such as trampling and fertiliser addition, erode the very food web structures that make the soil system stable, thereby reducing the ability of soil to resist and recover from future disturbances, such as extreme weather events. We will also resolve what makes a food web stable, and test the roles of different types of organisms in soil, such as mycorrhizal fungi, which we believe play a major role. And finally, we will develop new models to help us better predict how soils will respond to future threats and to guide management decisions on sustainable soil management in a rapidly changing world. These question are at the heart of the NERC Soil Security programme which seeks to resolve what controls the ability of soils and their functions to resist, recover and ultimately adapt, to perturbations, such as those caused by land use and extreme climatic events.

  • Funder: UKRI Project Code: EP/M01052X/1
    Funder Contribution: 731,953 GBP
    Partners: University of Edinburgh, University of Kent, UMCP, RU, SFU

    Condensed matter physics has developed a relatively complete theory of common phases in materials leading to many technologically important devices including electronic screens, memory storage, and switching devices. Landau, or mean-field theory, has provided a framework to model, predict, and understand phases and transitions in a surprisingly diverse variety of materials and also dynamical systems. While these conventional ground states have proven technologically important and the underlying theory represents a major success for scientists, these phases have proven incredibly difficult to suppress and often emerge when new materials properties are sought or engineered. To discover novel phases that will lead to a new materials revolution, these common phases need to be suppressed to allow exotic and unconventional properties to emerge. The most common vehicle to turn off conventional phases in materials has been through the introduction of disorder through chemical doping resulting in strong random fields. Many important theories have been formulated and tested to describe the effects of random fields and in particular to account for the fine balance between surface and bulk free energy. However, the use of disorder has proved limiting as properties are often templated into the material and not directly controllable and also the resulting ground state of the material is difficult to understand. Another route, which has more recently been explored in the last decade, to suppress conventional phases is by introducing strong fluctuations. While this can be trivially done with temperature, new phases have emerged by studying quantum systems where the physics are governed by quantum mechanics and the Heisenberg uncertainty principle. The study of quantum systems has resulted in the discovery of many new phases of matter including high temperature superconductors and also quantum spin-liquids where the magnetism is dynamic at any temperature. A limitation of quantum fluctuations is that the properties do not carry over directly to ferroelectric based systems and also multiferroics where magnetic and structural properties are strongly coupled. Also, owing to the strong fluctuating nature of the ground state, the properties have not been found to be easily tunable limiting immediate use for applications. This proposal aims to therefore take a different route by studying classically frustrated systems where a large ground state degeneracy is introduced naturally through the lattice and quantum mechanical effects are small. Emphasis will be placed on lattices based upon a triangular geometry. The lack of strong fluctuations (that exists in quantum systems) provides the ability to controllably tune between different ground states making this route a potential means of creating new switching devices or novel memory storage systems. The proposal aims to investigate classically frustrated magnets and ferroelectrics. These systems can be described within a common framework and will be studied using scattering techniques to provide a bulk real space image of the ground state. The properties will be tuned with magnetic and electric fields supplying a direct route for discovering a new route towards technologically applicable materials. The combined approach of investigating ferroelectrics and magnets will result in a complete understanding applicable to immediate industrial applications. These new materials will lead to the discovery of new phases including new high temperature multiferroics, classical spin liquids, or localized controllable boundaries or defects.

  • Funder: UKRI Project Code: NE/N006739/1
    Funder Contribution: 31,052 GBP
    Partners: University of Edinburgh, University of Pennsylvania, University of Toronto, UiO

    Parasitism is a widespread phenomenon in the natural world, with dramatic consequences for hosts, parasites, and their communities. There are over 3,000 described parasitic plant species, including mistletoes, the important grassland plant Rhinanthus, and the agricultural pest Striga. A particularly interesting, yet poorly studied group, are the facultative hemiparasites-which can grow and reproduce independent of a host, but grow more vigorously after host attachment. Facultative hemiparasitism represents a remarkably flexible growing strategy, which has largely been overlooked in preference of studies of obligate parasites-organisms which require a host to complete their lifecycle. This project investigates a case study of facultative hemiparasitism, from an evolutionary genetic perspective. The genus Euphrasia contains approximately 300 species, all of which are facultative hemiparasites. This proposal will make progress towards using this genus as a study system for investigating the evolutionary consequences of facultative hemiparasitism, on two fronts. Firstly, it will provide the funds to test emerging genomic approaches, develop new protocols, and produce preliminary data, required for ongoing research in Euphrasia. This will include testing a new chloroplast genome enrichment approach, applying a tissue-specific RNA sequencing method, and the development of a draft whole genome sequence. These resources will be essential for future work identifying loci involved in the evolution of facultative hemiparasites, and testing whether plant parasites are a vector for adaptive horizontal gene transfer. Secondly, this proposal will develop an international collaboration between a UK researcher in plant evolutionary genomics, the world expert in plant parasitism, a leader in plant genomics, and an international expert in the biology of Euphrasia. Such an international collaboration draws on the long history of research of parasitic plants in the USA, as well as the knowledge of Euphrasia biology centred in mainland Europe, to tackle questions about hemiparasitism in an integrated fashion. An increased understanding of plant parasitism will greatly benefit many areas of research, including evolutionary biology, plant biology, parasitology, and genome biology. In particular, understanding genomic changes associated with parasitism will be informative for researchers interested in the genetic basis of major life history transitions, while an understanding of transcriptional changes during host attachment will demonstrate a dramatic example of gene expression changes in the life of an organism. More generally, the identification of common loci underlying parasitic growth across diverse plant parasites, will facilitate the development of genetic tools to tackle parasitic plants that grow as agricultural pests.

  • Funder: UKRI Project Code: EP/M010643/1
    Funder Contribution: 403,977 GBP
    Partners: University of Warwick, University of Montreal

    The global demand for smaller and more energy efficient devices has been sustained by a steady decrease in the scale on which silicon microelectronics can be manufactured, from 65nm processes in the mid 2000s to 14nm in the very latest Intel processors. To continue this trend beyond the mid 2020s devices with dimensions of just 1-2nm will be required, likely using alternatives to silicon. In this regime, the cross section of a wire might be no more than 2x2 or 3x3 atoms across, where the relevant materials physics is dominated by surface and confinement effects leading to dramatically different structural and electronic properties to the corresponding bulk material. Such wires can be formed by crystallisation of a molten salt within carbon nanotubes (CNTs) of "Buckytubes", leading to the smallest cross section nano crystals possible, sometimes referred to as Feynman crystals. Research into the fundamental materials physics of these CNT-encapsulated structures is still in its infancy, with UK experimentalists leading the way. Particularly exciting recent work by one of the applicants (Sloan) has demonstrated the possibility of these wires undergoing transitions between nano-crystalline structures with markedly different properties, in response to bending strain in the CNT. These "phase change" properties open the way for nanoscale electromechanical switches and non-volatile memory, as well as providing a playground for fundamental studies of phase changes at the smallest length scale possible in a material. Our aim with the current project, inspired by these results, is to develop a computational modelling capability to aid in interpretation of experiments, understand the origin of the phase change behaviour, and guide our experimental colleagues toward compounds with potentially advantageous properties. Counterintuitively, due to a reduction in symmetry, the computational expense of simulating nanowires can be more demanding when compared to bulk crystals. We will address the limitations of currently available modelling tools when applied to these systems. This will involve significant modifications to existing software and a rigorous study of the various approximations one might employ to increase the tractability of simulations. We will apply cutting-edge methods in structure prediction to these systems, a non-trivial exercise due to the possibility wires with non-crystalline (e.g. helical) symmetry, and connect directly to relevant experiments by computing spectra related to the encapsulated wire's electronic and vibrational properties. Finally, we will study the thermodynamics and kinetics of nano-crystalline phase change, developing an understanding of when and how rapidly structural changes are affected to assess the utility of this mechanism for device applications.

  • Funder: UKRI Project Code: NE/M021025/1
    Funder Contribution: 1,473,360 GBP
    Partners: University of Liège, LSU, GFZ Potsdam - Geosciences, Chiba University, Utrecht University, BYG.DTU, University of Bristol, University of Copenhagen, University of Alberta, Woods Hole Oceanographic Inst...

    Concerns are growing about how much melting occurs on the surface of the Greenland Ice Sheet (GrIS), and how much this melting will contribute to sea level rise (1). It seems that the amount of melting is accelerating and that the impact on sea level rise is over 1 mm each year (2). This information is of concern to governmental policy makers around the world because of the risk to viability of populated coastal and low-lying areas. There is currently a great scientific need to predict the amount of melting that will occur on the surface of the GrIS over the coming decades (3), since the uncertainties are high. The current models which are used to predict the amount of melting in a warmer climate rely heavily on determining the albedo, the ratio of how reflective the snow cover and the ice surface are to incoming solar energy. Surfaces which are whiter are said to have higher albedo, reflect more sunlight and melt less. Surfaces which are darker adsorb more sunlight and so melt more. Just how the albedo varies over time depends on a number of factors, including how wet the snow and ice is. One important factor that has been missed to date is bio-albedo. Each drop of water in wet snow and ice contains thousands of tiny microorganisms, mostly algae and cyanobacteria, which are pigmented - they have a built in sunblock - to protect them from sunlight. These algae and cyanobacteria have a large impact on the albedo, lowering it significantly. They also glue together dust particles that are swept out of the air by the falling snow. These dust particles also contain soot from industrial activity and forest fires, and so the mix of pigmented microbes and dark dust at the surface produces a darker ice sheet. We urgently need to know more about the factors that lead to and limit the growth of the pigmented microbes. Recent work by our group in the darkest zone of the ice sheet surface in the SW of Greenland shows that the darkest areas have the highest numbers of cells. Were these algae to grow equally well in other areas of the ice sheet surface, then the rate of melting of the whole ice sheet would increase very quickly. A major concern is that there will be more wet ice surfaces for these microorganisms to grow in, and for longer, during a period of climate warming, and so the microorganisms will grow in greater numbers and over a larger area, lowering the albedo and increasing the amount of melt that occurs each year. The nutrient - plant food - that the microorganisms need comes from the ice crystals and dust on the ice sheet surface, and there are fears that increased N levels in snow and ice may contribute to the growth of the microorganisms. This project aims to be the first to examine the growth and spread of the microorganisms in a warming climate, and to incorporate biological darkening into models that predict the future melting of the GrIS. References 1. Sasgen I and 8 others. Timing and origin of recent regional ice-mass loss in Greenland. Earth and Planetary Science Letters, 333-334, 293-303(2012). 2. Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A. & Lenaerts, J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503, doi:10.1029/2011gl046583 (2011). 3. Milne, G. A., Gehrels, W. R., Hughes, C. W. & Tamisiea, M. E. Identifying the causes of sea-level change. Nature Geosci 2, 471-478 (2009).