141 Projects, page 1 of 15
Loading
- Project . 2011 - 2015Open Access mandate for PublicationsFunder: EC Project Code: 277984Partners: KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN, HOFFNUNGSBAUM EV VEREIN ZUR FORDERUNG DER ERFORSCHUNG UND BEHANDLUNG VON NBIA (VORMALS: HALLERVORDEN-SPATZ-SYNDROM)*TREE OF HOPE EV, CHRCO, ApoPharma, BAYFOR, ACIES BIO, OHSU, CZD, Newcastle University, FONDAZIONE IRCCS ISTITUTO NEUROLOGICO CARLO BESTA...
- Project . 2012 - 2015Funder: UKRI Project Code: EP/J008303/1Funder Contribution: 503,961 GBPPartners: Petrobank Energy and Resources Ltd, University of Birmingham
Extensive unexploited resources of heavy oil and bitumen exist, for example in Canada and Venezuela, as well as heavier deposits under the North Sea UK, which could potentially be utilized as the production of conventional light crude declines. Heavy oil and bitumen are more difficult to recover than conventional crude, requiring mining or specialized in-situ recovery techniques followed by upgrading to make them suitable for use as a fuel. Toe to heel air injection (THAITM) is an in-situ combustion and upgrading process in which air is injected to a horizontal well to feed combustion of a small fraction of the oil (up to 15 %). The heat generated causes the oil to flow along the well, where thermal upgrading reactions occur, leading to upgrading of the oil (by 4-6 API). CAPRI is a catalytic add-on to THAI in which catalyst is packed around the well to effect further catalytic upgrading reactions, such as hydrotreatment, however previous studies showed that the catalyst lifetime and process effectiveness are limited by coke deposition upon the catalyst. Additionally the costs and challenges of packing the well with pelleted catalyst prior to starting up also make the CAPRI process less economically attractive. The current proposal seeks to develop cheap, effective nanoparticulate catalysts which could be conveyed into the well by air or as slurry during operation, thereby avoiding the requirement for packing the well with catalyst prior to start up and to reduce the amount of deactivation and bed blockage that occurs by coke deposition upon pelleted catalysts. Initially, readily available iron oxide nanoparticles will be tested as a base-case. Nanoparticulate catalysts will also be prepared by supporting the metal upon bacteria, using a method in which metal containing solution is reduced in the presence of a bacterial culture, followed by centrifuge and drying which kills the live bacteria. The method has the advantages of being able to utilize scrap metal solutions and thus facilitate recycling of metals from waste sources, and it may be tuned to engineer nanoparticles of desired size and properties (e.g. crystal structures). Here we seek to develop, test and scale up the production of biogenic Fe catalysts for the upgrading of oil in the THAI process. Furthermore, waste road dusts contain deposits of catalytic metals from the exhaust of vehicular catalytic converters and these will be converted into cheap mixed metal catalysts by economically proven biohydrometallurgical methods for testing in the THAI process. Key to the effectiveness of utilizing nanoparticle catalysts will be the ability to contact them with oil in the mobile oil zone and flame front of the well, where the reaction is taking place. Studies of the rock void structure will be carried out using techniques such as X-Ray microtomography. Monte Carlo and Lattice Boltzmann simulations will be used to study the pneumatic conveying of particles into the reservoir and to study penetration and distribution of particles within the void space of the rocks. Conveying of slurry catalysts and process performance will be modeled using STARS reservoir simulation software. Evaluation of the different catalysts will be performed experimentally under real conditions using a rig developed under a previous project. The effect of variables such as gas:oil ratio, temperature, pressure and gas composition will be studied experimentally, in order to select the best catalyst and understand the conditions required for maximum upgrading. The experiments will also indicate whether catalyst deactivation occurs during use and enable conditions to be tuned to avoid deactivation.
- Project . 2015 - 2015Funder: SNSF Project Code: 158825Funder Contribution: 50,176Partners: Schulich School of Business York University
- Project . 2013 - 2015Funder: UKRI Project Code: NE/K005421/1Funder Contribution: 337,728 GBPPartners: AXYS, Liquid Robotics, NOC
Variations in sea level have a great environmental impact. They modulate coastal deposition, erosion and morphology, regulate heat and salt fluxes in estuaries, bays and ground waters, and control the dynamics of coastal ecosystems. Sea level variability has importance for coastal navigation, the building of coastal infrastructure, and the management of waste. The challenges of measuring, understanding and predicting sea level variations take particular relevance within the backdrop of global sea level rise, which might lead to the displacement of hundreds of millions of people by the end of this century. Sea level measurement relies primarily on the use of coastal tide gauges and satellite altimetry. Tide gauges provide sea levels at fine time resolutions (up to one second), but collect data only in coastal areas, and are irregularly distributed, with large gaps in the southern hemisphere and at high latitudes. Satellite altimetry, in contrast, has poor time resolution (ten days or longer), but provides near global coverage at moderate spatial resolutions (10-to-100 kilometres). Altimetric sea level products are problematic near the coast for reasons such as uncertainties in applying sea state bias corrections, errors in coastal tidal models, and large geoid gradients. The complicated shoreline geometry means that the raw altimeter data have to either undergo special transformations to provide more reliable measurements of sea level or be rejected. Developments in GPS measurements from buoys are now making it possible to determine sea surface heights with accuracy comparable to that of altimetry. In combination with coastal tide gauges, GPS buoys could be used as the nodes of a global sea level monitoring network extending beyond the coast. However, GPS buoys have several downsides. They are difficult and expensive to deploy, maintain, and recover, and, like conventional tide gauges, provide time series only at individual points in the ocean. This proposal focuses on the development of a unique system that overcomes these shortcomings. We propose a technology-led project to integrate Global Navigation Satellite Systems (GNSS i.e. encompassing GPS, GLONASS and, possibly, Galileo) technology with a state-of-the-art, unmanned surface vehicle: a Wave Glider. The glider farms the ocean wave field for propulsion, uses solar power to run on board equipment, and uses satellite communications for remote navigation and data transmission. A Wave Glider equipped with a high-accuracy GNSS receiver and data logger is effectively a fully autonomous, mobile, floating tide gauge. Missions and routes can be preprogrammed as well as changed remotely. Because the glider can be launched and retrieved from land or from a small boat, the costs associated with deployment, maintenance and recovery of the GNSS Wave Glider are comparatively small. GNSS Wave Glider technology promises a level of versatility well beyond that of existing ways of measuring sea levels. Potential applications of a GNSS Wave Glider include: 1) measurement of mean sea level and monitoring of sea level variations worldwide, 2) linking of offshore and onshore vertical datums, 3) calibration of satellite altimetry, notably in support of current efforts to reinterpret existing altimetric data near the coast, but also in remote and difficult to access areas, 4) determination of regional geoid variations, 5) ocean model improvement. The main thrust of this project is to integrate a state-of-the-art, geodetic-grade GNSS receiver and logging system with a Wave Glider recently acquired by NOC to create a mobile and autonomous GNSS-based tide gauge. By the end of the project, a demonstrator GNSS Wave Glider will be available for use by NOC and the UK marine community. The system performance will be validated against tide gauge data. Further tests will involve the use of the GNSS Wave Glider to calibrate sea surface heights and significant wave heights from Cryosat-2.
- Project . 2012 - 2015Funder: EC Project Code: 314233Partners: Hydro-Québec, GKN Aerospace Services Limited, IK4-TEKNIKER, TEKNOLOGIAN TUTKIMUSKESKUS VTT OY, FHG, EASN-TIS, CVR, FADA-CATEC, FUNDACION CIDETEC, EADS DEUTSCHLAND GMBH
- Project . 2011 - 2015Funder: UKRI Project Code: NE/I009906/1Funder Contribution: 625,765 GBPPartners: EA, University of Southampton, Australian National University, Willis Limited, UKCIP, Université Laval
The vulnerability of extensive near-coastal habitation, infrastructure, and trade makes global sea-level rise a major global concern for society. The UK coastline, for example, has ~£150 billion of assets at risk from coastal flooding, of which with £75 billion in London alone. Consequently, most nations have developed/ implemented protection plans, which commonly use ranges of sea-level rise estimates from global warming scenarios such as those published by IPCC, supplemented by worst-case values from limited geological studies. UKCP09 provides the most up-to-date guidance on UK sea-level rise scenarios and includes a low probability, high impact range for maximum UK sea level rise for use in contingency planning and in considerations regarding the limits to potential adaptation (the H++ scenario). UKCP09 emphasises that the H++ scenario is unlikely for the next century, but it does introduce significant concerns when planning for longer-term future sea-level rise. Currently, the range for H++ is set to 0.9-1.9 m of rise by the end of the 21st century. This range of uncertainty is large (with vast planning and financial implications), and - more critically - it has no robust statistical basis. It is important, therefore, to better understand the processes controlling the maximum sea-level rise estimate for the future on these time-scales. This forms the overarching motivation for the consortium project proposed here. iGlass is a broad-ranging interdisciplinary project that will integrate field data and modelling, in order to study the response of ice volume/sea level to different climate states during the last five interglacials, which include times with significantly higher sea level than the present. This will identify the likelihood of reduced ice cover over Greenland and West Antarctica, an important constraint on future sea-level projections. A key outcome will be to place sound limits on the likely ice-volume contribution to maximum sea-level rise estimates for the future. Our project is guided by three key questions: Q1. What do palaeo-sea level positions reveal about the global ice-volume/sea-level changes during a range of different interglacial climate states? Q2. What were the rates of sea-level rise in past interglacials, and to what extent are these relevant for future change, given the different climate forcing? Q3. Under a range of given (IPCC) climate projection scenarios, what are the projected limits to maximum sea-level rise over the next few centuries when accounting for ice-sheet contributions? The research will directly inform decision-making processes regarding flood risk management in the UK and abroad. In this respect, the project benefits from the close co-operation with scientists and practitioners in the UK Environment Agency, UKCIP, the UK insurance industry, as well as the wider global academic and user communities.
- Open Access mandate for PublicationsFunder: EC Project Code: 306125Partners: STICHTING SAGE BIONETWORKS EU, Jewish General Hospital, FOUNDATION MEDICINE INC, Sheba Research Fund, BGU, VHIO, UT System, ARIANA, UC, INSTITUT GUSTAVE ROUSSY...
- Project . 2010 - 2015Funder: NIH Project Code: 4R01DA028532-04Funder Contribution: 366,702 USDPartners: UBC
- Project . 2014 - 2015Funder: SNSF Project Code: 151253Funder Contribution: 84,862Partners: University of Quebec Dept. of Biological Sciences
- Project . 2014 - 2015Funder: UKRI Project Code: AH/L008483/1Funder Contribution: 35,300 GBPPartners: Carleton University, IISc, Northumbria University
This research will create a truly innovative, international research network that will stretch far and wide in the area of "Cultures of Creativity and Innovation in Design". The international research network coordinating body comprises Professors Paul Rodgers and Paul Jones from Northumbria University, Professor Amaresh Chakrabarti, a world-leading researcher in Design Creativity, from the Centre for Product Design and Manufacturing at the Indian Institute of Science, Bangalore and Professor Lorenzo Imbesi, an internationally-acclaimed researcher in Design Culture, from the School of Industrial Design at Carleton University, Canada. The importance of creativity in the cultural, creative and other industries and the significant contributions that creativity adds to a nation's overall GDP and the subsequent health and wellbeing of its people cannot be overstated. In Europe, the value of the cultural and creative industries is estimated at well over 700 billion Euros each year, twice that of Europe's car manufacturing industry. The value of creativity and innovation, to any nation, is therefore huge. Creativity and innovation adds real value, which enables a number of benefits such as economic growth and social wellbeing. In many societies creativity epitomises success, excitement and value. Whether driven by individuals, companies, enterprises or regions creativity and innovation establishes immediate empathy, and conveys an image of dynamism. Creativity is thus a positive word in societies constantly aspiring to innovation and progress. In short, creativity in all of its manifestations enriches society. This network seeks to gain an understanding of this dynamic ecology that creativity and innovation bring to society. Creativity is a vital ingredient in the production of products, services and systems, both in the cultural industries and across the economy as a whole. Yet despite its importance and the ubiquitous use of creativity as a term there are issues regarding its definitional clarity. A better understanding and articulation of creativity as a concept and a process would support enhanced future innovation. Socio-cultural approaches to creativity explain that creative ideas or products do not happen inside people's heads, but in the interaction between a person's thoughts and a socio-cultural context. It is acknowledged that creativity cannot be taught, but that it can be cultivated and this has significant implications for a nation's design and innovation culture. It is known that creativity flourishes in congenial environments and in creative climates. This research will examine how creativity is valued, exploited, and facilitated across different national and cultural settings as all can have a major impact on a nation's creative potential. The key aim of this network is to investigate attitudes about creativity and how it is best cultivated and exploited across three different geographical locations (UK, India, and Canada), different environments, and cultures from both an individual designer's perspective and design groups' perspectives. The network seeks to investigate cultures of creativity and innovation in design and question its nature. For instance, can creativity be adequately conceptualised in a design context? What role do cultural organisations and national bodies play in harnessing creativity? Where do the "edges" lie between creativity and innovation? Do richer environments and approaches for facilitating creativity exist? What design skills, knowledge, and expertise are required for creativity? Moreover, what are the key drivers that motivate the creativity and innovation of designers and other stakeholders? Are they economical, cultural, social, or political? This research network will host 3 workshops, each one facilitating inquiry amongst invited design practitioners, researchers, educators and other stakeholders involved in design practice.
141 Projects, page 1 of 15
Loading
- Project . 2011 - 2015Open Access mandate for PublicationsFunder: EC Project Code: 277984Partners: KLINIKUM RECHTS DER ISAR DER TECHNISCHEN UNIVERSITAT MUNCHEN, HOFFNUNGSBAUM EV VEREIN ZUR FORDERUNG DER ERFORSCHUNG UND BEHANDLUNG VON NBIA (VORMALS: HALLERVORDEN-SPATZ-SYNDROM)*TREE OF HOPE EV, CHRCO, ApoPharma, BAYFOR, ACIES BIO, OHSU, CZD, Newcastle University, FONDAZIONE IRCCS ISTITUTO NEUROLOGICO CARLO BESTA...
- Project . 2012 - 2015Funder: UKRI Project Code: EP/J008303/1Funder Contribution: 503,961 GBPPartners: Petrobank Energy and Resources Ltd, University of Birmingham
Extensive unexploited resources of heavy oil and bitumen exist, for example in Canada and Venezuela, as well as heavier deposits under the North Sea UK, which could potentially be utilized as the production of conventional light crude declines. Heavy oil and bitumen are more difficult to recover than conventional crude, requiring mining or specialized in-situ recovery techniques followed by upgrading to make them suitable for use as a fuel. Toe to heel air injection (THAITM) is an in-situ combustion and upgrading process in which air is injected to a horizontal well to feed combustion of a small fraction of the oil (up to 15 %). The heat generated causes the oil to flow along the well, where thermal upgrading reactions occur, leading to upgrading of the oil (by 4-6 API). CAPRI is a catalytic add-on to THAI in which catalyst is packed around the well to effect further catalytic upgrading reactions, such as hydrotreatment, however previous studies showed that the catalyst lifetime and process effectiveness are limited by coke deposition upon the catalyst. Additionally the costs and challenges of packing the well with pelleted catalyst prior to starting up also make the CAPRI process less economically attractive. The current proposal seeks to develop cheap, effective nanoparticulate catalysts which could be conveyed into the well by air or as slurry during operation, thereby avoiding the requirement for packing the well with catalyst prior to start up and to reduce the amount of deactivation and bed blockage that occurs by coke deposition upon pelleted catalysts. Initially, readily available iron oxide nanoparticles will be tested as a base-case. Nanoparticulate catalysts will also be prepared by supporting the metal upon bacteria, using a method in which metal containing solution is reduced in the presence of a bacterial culture, followed by centrifuge and drying which kills the live bacteria. The method has the advantages of being able to utilize scrap metal solutions and thus facilitate recycling of metals from waste sources, and it may be tuned to engineer nanoparticles of desired size and properties (e.g. crystal structures). Here we seek to develop, test and scale up the production of biogenic Fe catalysts for the upgrading of oil in the THAI process. Furthermore, waste road dusts contain deposits of catalytic metals from the exhaust of vehicular catalytic converters and these will be converted into cheap mixed metal catalysts by economically proven biohydrometallurgical methods for testing in the THAI process. Key to the effectiveness of utilizing nanoparticle catalysts will be the ability to contact them with oil in the mobile oil zone and flame front of the well, where the reaction is taking place. Studies of the rock void structure will be carried out using techniques such as X-Ray microtomography. Monte Carlo and Lattice Boltzmann simulations will be used to study the pneumatic conveying of particles into the reservoir and to study penetration and distribution of particles within the void space of the rocks. Conveying of slurry catalysts and process performance will be modeled using STARS reservoir simulation software. Evaluation of the different catalysts will be performed experimentally under real conditions using a rig developed under a previous project. The effect of variables such as gas:oil ratio, temperature, pressure and gas composition will be studied experimentally, in order to select the best catalyst and understand the conditions required for maximum upgrading. The experiments will also indicate whether catalyst deactivation occurs during use and enable conditions to be tuned to avoid deactivation.
- Project . 2015 - 2015Funder: SNSF Project Code: 158825Funder Contribution: 50,176Partners: Schulich School of Business York University
- Project . 2013 - 2015Funder: UKRI Project Code: NE/K005421/1Funder Contribution: 337,728 GBPPartners: AXYS, Liquid Robotics, NOC
Variations in sea level have a great environmental impact. They modulate coastal deposition, erosion and morphology, regulate heat and salt fluxes in estuaries, bays and ground waters, and control the dynamics of coastal ecosystems. Sea level variability has importance for coastal navigation, the building of coastal infrastructure, and the management of waste. The challenges of measuring, understanding and predicting sea level variations take particular relevance within the backdrop of global sea level rise, which might lead to the displacement of hundreds of millions of people by the end of this century. Sea level measurement relies primarily on the use of coastal tide gauges and satellite altimetry. Tide gauges provide sea levels at fine time resolutions (up to one second), but collect data only in coastal areas, and are irregularly distributed, with large gaps in the southern hemisphere and at high latitudes. Satellite altimetry, in contrast, has poor time resolution (ten days or longer), but provides near global coverage at moderate spatial resolutions (10-to-100 kilometres). Altimetric sea level products are problematic near the coast for reasons such as uncertainties in applying sea state bias corrections, errors in coastal tidal models, and large geoid gradients. The complicated shoreline geometry means that the raw altimeter data have to either undergo special transformations to provide more reliable measurements of sea level or be rejected. Developments in GPS measurements from buoys are now making it possible to determine sea surface heights with accuracy comparable to that of altimetry. In combination with coastal tide gauges, GPS buoys could be used as the nodes of a global sea level monitoring network extending beyond the coast. However, GPS buoys have several downsides. They are difficult and expensive to deploy, maintain, and recover, and, like conventional tide gauges, provide time series only at individual points in the ocean. This proposal focuses on the development of a unique system that overcomes these shortcomings. We propose a technology-led project to integrate Global Navigation Satellite Systems (GNSS i.e. encompassing GPS, GLONASS and, possibly, Galileo) technology with a state-of-the-art, unmanned surface vehicle: a Wave Glider. The glider farms the ocean wave field for propulsion, uses solar power to run on board equipment, and uses satellite communications for remote navigation and data transmission. A Wave Glider equipped with a high-accuracy GNSS receiver and data logger is effectively a fully autonomous, mobile, floating tide gauge. Missions and routes can be preprogrammed as well as changed remotely. Because the glider can be launched and retrieved from land or from a small boat, the costs associated with deployment, maintenance and recovery of the GNSS Wave Glider are comparatively small. GNSS Wave Glider technology promises a level of versatility well beyond that of existing ways of measuring sea levels. Potential applications of a GNSS Wave Glider include: 1) measurement of mean sea level and monitoring of sea level variations worldwide, 2) linking of offshore and onshore vertical datums, 3) calibration of satellite altimetry, notably in support of current efforts to reinterpret existing altimetric data near the coast, but also in remote and difficult to access areas, 4) determination of regional geoid variations, 5) ocean model improvement. The main thrust of this project is to integrate a state-of-the-art, geodetic-grade GNSS receiver and logging system with a Wave Glider recently acquired by NOC to create a mobile and autonomous GNSS-based tide gauge. By the end of the project, a demonstrator GNSS Wave Glider will be available for use by NOC and the UK marine community. The system performance will be validated against tide gauge data. Further tests will involve the use of the GNSS Wave Glider to calibrate sea surface heights and significant wave heights from Cryosat-2.
- Project . 2012 - 2015Funder: EC Project Code: 314233Partners: Hydro-Québec, GKN Aerospace Services Limited, IK4-TEKNIKER, TEKNOLOGIAN TUTKIMUSKESKUS VTT OY, FHG, EASN-TIS, CVR, FADA-CATEC, FUNDACION CIDETEC, EADS DEUTSCHLAND GMBH
- Project . 2011 - 2015Funder: UKRI Project Code: NE/I009906/1Funder Contribution: 625,765 GBPPartners: EA, University of Southampton, Australian National University, Willis Limited, UKCIP, Université Laval
The vulnerability of extensive near-coastal habitation, infrastructure, and trade makes global sea-level rise a major global concern for society. The UK coastline, for example, has ~£150 billion of assets at risk from coastal flooding, of which with £75 billion in London alone. Consequently, most nations have developed/ implemented protection plans, which commonly use ranges of sea-level rise estimates from global warming scenarios such as those published by IPCC, supplemented by worst-case values from limited geological studies. UKCP09 provides the most up-to-date guidance on UK sea-level rise scenarios and includes a low probability, high impact range for maximum UK sea level rise for use in contingency planning and in considerations regarding the limits to potential adaptation (the H++ scenario). UKCP09 emphasises that the H++ scenario is unlikely for the next century, but it does introduce significant concerns when planning for longer-term future sea-level rise. Currently, the range for H++ is set to 0.9-1.9 m of rise by the end of the 21st century. This range of uncertainty is large (with vast planning and financial implications), and - more critically - it has no robust statistical basis. It is important, therefore, to better understand the processes controlling the maximum sea-level rise estimate for the future on these time-scales. This forms the overarching motivation for the consortium project proposed here. iGlass is a broad-ranging interdisciplinary project that will integrate field data and modelling, in order to study the response of ice volume/sea level to different climate states during the last five interglacials, which include times with significantly higher sea level than the present. This will identify the likelihood of reduced ice cover over Greenland and West Antarctica, an important constraint on future sea-level projections. A key outcome will be to place sound limits on the likely ice-volume contribution to maximum sea-level rise estimates for the future. Our project is guided by three key questions: Q1. What do palaeo-sea level positions reveal about the global ice-volume/sea-level changes during a range of different interglacial climate states? Q2. What were the rates of sea-level rise in past interglacials, and to what extent are these relevant for future change, given the different climate forcing? Q3. Under a range of given (IPCC) climate projection scenarios, what are the projected limits to maximum sea-level rise over the next few centuries when accounting for ice-sheet contributions? The research will directly inform decision-making processes regarding flood risk management in the UK and abroad. In this respect, the project benefits from the close co-operation with scientists and practitioners in the UK Environment Agency, UKCIP, the UK insurance industry, as well as the wider global academic and user communities.
- Open Access mandate for PublicationsFunder: EC Project Code: 306125Partners: STICHTING SAGE BIONETWORKS EU, Jewish General Hospital, FOUNDATION MEDICINE INC, Sheba Research Fund, BGU, VHIO, UT System, ARIANA, UC, INSTITUT GUSTAVE ROUSSY...
- Project . 2010 - 2015Funder: NIH Project Code: 4R01DA028532-04Funder Contribution: 366,702 USDPartners: UBC
- Project . 2014 - 2015Funder: SNSF Project Code: 151253Funder Contribution: 84,862Partners: University of Quebec Dept. of Biological Sciences
- Project . 2014 - 2015Funder: UKRI Project Code: AH/L008483/1Funder Contribution: 35,300 GBPPartners: Carleton University, IISc, Northumbria University
This research will create a truly innovative, international research network that will stretch far and wide in the area of "Cultures of Creativity and Innovation in Design". The international research network coordinating body comprises Professors Paul Rodgers and Paul Jones from Northumbria University, Professor Amaresh Chakrabarti, a world-leading researcher in Design Creativity, from the Centre for Product Design and Manufacturing at the Indian Institute of Science, Bangalore and Professor Lorenzo Imbesi, an internationally-acclaimed researcher in Design Culture, from the School of Industrial Design at Carleton University, Canada. The importance of creativity in the cultural, creative and other industries and the significant contributions that creativity adds to a nation's overall GDP and the subsequent health and wellbeing of its people cannot be overstated. In Europe, the value of the cultural and creative industries is estimated at well over 700 billion Euros each year, twice that of Europe's car manufacturing industry. The value of creativity and innovation, to any nation, is therefore huge. Creativity and innovation adds real value, which enables a number of benefits such as economic growth and social wellbeing. In many societies creativity epitomises success, excitement and value. Whether driven by individuals, companies, enterprises or regions creativity and innovation establishes immediate empathy, and conveys an image of dynamism. Creativity is thus a positive word in societies constantly aspiring to innovation and progress. In short, creativity in all of its manifestations enriches society. This network seeks to gain an understanding of this dynamic ecology that creativity and innovation bring to society. Creativity is a vital ingredient in the production of products, services and systems, both in the cultural industries and across the economy as a whole. Yet despite its importance and the ubiquitous use of creativity as a term there are issues regarding its definitional clarity. A better understanding and articulation of creativity as a concept and a process would support enhanced future innovation. Socio-cultural approaches to creativity explain that creative ideas or products do not happen inside people's heads, but in the interaction between a person's thoughts and a socio-cultural context. It is acknowledged that creativity cannot be taught, but that it can be cultivated and this has significant implications for a nation's design and innovation culture. It is known that creativity flourishes in congenial environments and in creative climates. This research will examine how creativity is valued, exploited, and facilitated across different national and cultural settings as all can have a major impact on a nation's creative potential. The key aim of this network is to investigate attitudes about creativity and how it is best cultivated and exploited across three different geographical locations (UK, India, and Canada), different environments, and cultures from both an individual designer's perspective and design groups' perspectives. The network seeks to investigate cultures of creativity and innovation in design and question its nature. For instance, can creativity be adequately conceptualised in a design context? What role do cultural organisations and national bodies play in harnessing creativity? Where do the "edges" lie between creativity and innovation? Do richer environments and approaches for facilitating creativity exist? What design skills, knowledge, and expertise are required for creativity? Moreover, what are the key drivers that motivate the creativity and innovation of designers and other stakeholders? Are they economical, cultural, social, or political? This research network will host 3 workshops, each one facilitating inquiry amongst invited design practitioners, researchers, educators and other stakeholders involved in design practice.