search
Include:
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
45 Research products, page 1 of 5

  • Canada
  • Natural Sciences and Engineering Research Council of Canada
  • Frontiers in Neurology

10
arrow_drop_down
Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Arnaud Boujut; Arnaud Boujut; Lynn Valeyry Verty; Lynn Valeyry Verty; Samantha Maltezos; Samantha Maltezos; Maxime Lussier; Maxime Lussier; Samira Mellah; Louis Bherer; +5 more
    Publisher: Frontiers Media S.A.
    Project: NSERC

    Background: Working memory (WM) capacity declines with advancing age, which impacts the ability to carry out complex cognitive activities in everyday life. Updating and inhibition processes have been identified as some of the most critical attentional control processes of WM and are linked to age-related WM decline. The general aim of the Attentional Control Training in Older People (ACTOP) study was to perform a side-by-side comparison of updating and inhibition training to examine their respective efficacy and transfer in cognitively healthy older adults.Method: The study was a three-arm, double-blind, randomized controlled trial registered with the US National Institutes of Health clinical trials registry. Ninety older adults were randomly assigned to 12 half-hour sessions of updating (N-back type exercises), inhibition (Stroop-like exercises) computerized training or active control (general knowledge quiz game). A group of thirty younger adults completed all proximal and WM transfer tasks without training to assess age-related deficits prior to training and whether training reduces these deficits.Results: Piecewise mixed models show quick improvement of performance during training for both updating and inhibition training. During updating training, the progression was more pronounced for the most difficult (3-back) than for the least (1-back) difficult level until the ninth session. Updating and inhibition training groups improved performance on all proximal and WM transfer measures but these improvements did not differ from the active control group. Younger adults outperformed older ones on all transfer tasks prior to training. However, this was no longer the case following training for two transfer tasks regardless of the training group.Conclusion: The overall results from this study suggest that attentional control training is effective in improving updating and inhibition performance on training tasks. The optimal dose to achieve efficacy is ~9 half-hour sessions and the dose effect was related to difficulty level for updating training. Despite an overall improvement of older adults on all transfer tasks, neither updating nor inhibition training provided additional improvements in comparison with the active control condition. This suggests that the efficacy of process-based training does not directly affect transfer tasks.Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT03532113

  • Open Access
    Authors: 
    Christin M. Sadler; Aline Tiemi Kami; Julie Nantel; Jonathan Lommen; Anthony N. Carlsen;
    Publisher: Frontiers Media SA
    Project: NSERC

    BackgroundTranscranial direct current stimulation (tDCS) has been shown to modulate cortical motor excitability and improve bradykinesia symptoms in Parkinson's disease. It is unclear how targeting different cortical motor areas with tDCS may differentially influence upper limb function for individuals diagnosed with PD.ObjectiveThis study investigated whether anodal tDCS applied separately to the primary motor cortex and the supplementary motor area would improve upper limb function for individuals with Parkinson's disease. In addition, a startling acoustic stimulus was used to differentiate between the effect of stimulation on motor preparatory and initiation processes associated with upper limb movements.MethodsEleven participants with idiopathic Parkinson's disease performed two upper limb simple reaction time tasks, involving elbow extension or a button press before and after either anodal tDCS or sham tDCS was applied over the primary motor cortex or supplementary motor area. A loud, startling stimulus was presented on a selection of trials to involuntarily trigger the prepared action.ResultsAnodal tDCS led to improved premotor reaction time in both tasks, but this was moderated by reaction time in pre-tDCS testing, such that individuals with slower pre-tDCS reaction time showed the greatest reaction time improvements. Startle-trial reaction time was not modified following tDCS, suggesting that the stimulation primarily modulated response initiation processes.ConclusionAnodal tDCS improved response initiation speed, but only in slower reacting individuals with PD. However, no differences attributable to tDCS were observed in clinical measures of bradykinesia or kinematic variables, suggesting that reaction time may represent a more sensitive measure of some components of bradykinesia.

  • Open Access English
    Authors: 
    Gabriela S. Gilmour; Davide Martino; Davide Martino; Karen Hunka; Pia Lawrence; Zelma H. T. Kiss; Zelma H. T. Kiss; Veronica Bruno; Veronica Bruno;
    Publisher: Frontiers Media S.A.
    Project: NSERC

    Introduction: Essential tremor (ET) is a tremor syndrome characterized by bilateral, upper limb action tremor. Essential tremor-plus (ET-plus) describes ET patients with additional neurologic signs. It is unknown whether there is a difference in response to treatment with ventralis intermedius nucleus deep brain stimulation (VIM DBS) in patients with ET and ET-plus. Due to potential variability in underlying etiology in ET-plus, there is a concern that ET-plus patients may have worse outcomes. The aim of this study was to identify whether patients with ET-plus have worse tremor outcomes after VIM DBS than patients with ET.Methods: This is a retrospective chart and video review evaluating VIM DBS outcomes by comparing changes from baseline in the Fahn-Tolosa-Marin Tremor Rating Scale Part B (FTM-B) for the treated limb between patients with ET and ET-plus at follow-up examinations. Patients were re-classified as having ET or ET-plus using pre-operative examination videos by two independent movement disorders neurologists blinded to patient characteristics. As a secondary outcome, we evaluated for correlations and potential predictors of treatment response.Results: Twenty-six patients were included: 13 with ET, 13 with ET-plus. There were no significant differences in the change in FTM-B scores between the ET and ET-plus patients at each follow-up examination. None of the included patients developed new symptoms compatible with dystonia, parkinsonism or gait disturbances.Conclusions: Patients with ET-plus had tremor improvement from VIM DBS, with no differences when compared to those with ET, without emergence of postoperative neurological issues. Patients with ET-plus should still be considered good candidates for VIM DBS for treatment of tremor.

  • Open Access English
    Authors: 
    Brian D. Robertson; Abdullah S. Al Jaja; Abdullah S. Al Jaja; Alex A. MacDonald; Nole M. Hiebert; Nole M. Hiebert; Ruzbeh Tamjeedi; Ken N. Seergobin; Ute I. Schwarz; Ute I. Schwarz; +6 more
    Publisher: Frontiers Media S.A.
    Country: Canada
    Project: NSERC

    In Parkinson's disease (PD), cognitive functions mediated by brain regions innervated by ventral tegmental area (VTA) worsen with dopamine replacement therapy, whereas processes relying on regions innervated by the substantia nigra pars compacta (SNc) improve. The SLC6A3 gene encodes the dopamine transporter (DAT). The common 9R polymorphism produces higher DAT concentrations and consequently lower baseline dopamine than SLC6A3 wildtype. Whether SLC6A3 genotype modulates the effect of dopaminergic therapy on cognition in PD is not known. We investigated the effect of dopaminergic therapy and SLC6A3 genotype on encoding and recall of abstract images using the Aggie Figures Learning Test in PD patients. Encoding depends upon brain regions innervated by the VTA, whereas recall is mediated by widespread brain regions, a number innervated by the SNc. We found that dopaminergic therapy worsened encoding of abstract images in 9R carriers only. In contrast, dopaminergic therapy improved recall of abstract images in all PD patients, irrespective of SLC6A3 genotype. Our findings suggest that 9R-carrier PD patients are more predisposed to dopamine overdose and medication-induced impairment of cognitive functions mediated by VTA-innervated brain regions. Interestingly, PD patients without the 9R polymorphism did not show such an impairment. SLC6A3 genotype does not modulate the dopaminergic therapy-induced improvement of functions mediated by SNc-innervated regions in PD patients.

  • Open Access English
    Authors: 
    Quincy J. Almeida; Matt J. N. Brown;
    Publisher: Frontiers Media S.A.
    Project: NSERC

    Bradykinesia is a well-documented DOPA-responsive clinical feature of Parkinson’s disease (PD). While amplitude deficits (hypokinesia) are a key component of this slowness, it is important to consider how dopamine influences both the amplitude (hypokinesia) and frequency components of bradykinesia when a bimanually coordinated movement is required. Based on the notion that the basal ganglia are associated with sensory deficits, the influence of dopaminergic replacement on sensory feedback conditions during bimanual coordination was also evaluated. Bimanual movements were examined in PD and healthy comparisons in an unconstrained three-dimensional coordination task. PD were tested “off” (overnight withdrawal of dopaminergic treatment) and “on” (peak dose of dopaminergic treatment), while the healthy group was evaluated for practice effects across two sessions. Required cycle frequency (increased within each trial from 0.75 to 2 Hz), type of visual feedback (no vision, normal vision, and augmented vision), and coordination pattern (symmetrical in-phase and non-symmetrical anti-phase) were all manipulated. Overall, coordination (mean accuracy and standard deviation of relative phase) and amplitude deficits during bimanual coordination were confirmed in PD participants. In addition, significant correlations were identified between severity of motor symptoms as well as bradykinesia to greater coordination deficits (accuracy and stability) in PD “off” group. However, even though amplitude deficits (hypokinesia) improved with dopaminergic replacement, it did not improve bimanual coordination performance (accuracy or stability) in PD patients from “off” to “on.” Interestingly, while coordination performance in both groups suffered in the augmented vision condition, the amplitude of the more affected limb of PD was notably influenced. It can be concluded that DOPA-responsive hypokinesia contributes to, but is not directly responsible for bimanual coordination impairments in PD. It is likely that bimanual coordination deficits in PD are caused by the combination of dopaminergic system dysfunction as well as other neural impairments that may be DOPA-resistant or related to non-dopaminergic pathways.

  • Open Access English
    Authors: 
    Todd Nelson; Todd Nelson; Lan-Xin Zhang; Lan-Xin Zhang; Hui Guo; Hui Guo; Luis Nacul; Luis Nacul; Xiaowei Song; Xiaowei Song;
    Publisher: Frontiers Media S.A.
    Country: United Kingdom
    Project: NSERC

    Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a multisystem medical condition with heterogeneous symptom expression. Currently, there is no effective cure or treatment for the standard care of patients. A variety of ME/CFS symptoms can be linked to the vital life functions of the brainstem, the lower extension of the brain best known as the hub relaying information back and forth between the cerebral cortex and various parts of the body.Objective/Methods: Over the past decade, Magnetic Resonance Imaging (MRI) studies have emerged to understand ME/CFS with interesting findings, but there has lacked a synthesized evaluation of what has been found thus far regarding the involvement of the brainstem. We conducted this study to review and evaluate the recent MRI findings via a literature search of the MEDLINE database, from which 11 studies met the eligibility criteria.Findings: Data showed that MRI studies frequently reported structural changes in the white and gray matter. Abnormalities of the functional connectivity within the brainstem and with other brain regions have also been found. The studies have suggested possible mechanisms including astrocyte dysfunction, cerebral perfusion impairment, impaired nerve conduction, and neuroinflammation involving the brainstem, which may at least partially explain a substantial portion of the ME/CFS symptoms and their heterogeneous presentations in individual patients.Conclusions: This review draws research attention to the role of the brainstem in ME/CFS, helping enlighten future work to uncover the pathologies and mechanisms of this complex medical condition, for improved management and patient care.

  • Open Access
    Authors: 
    Cody Rex; Marie-Josée Nadeau; Renée N. Douville; Kerri Schellenberg;
    Publisher: Frontiers Media SA
    Project: NSERC

    Background: Spinal and Bulbar Muscular Atrophy (SBMA) is caused by the extension of the polyglutamine tract within the androgen receptor (AR) gene, and results in a multisystem presentation, including the degeneration of lower motor neurons. The androgen receptor (AR) is known to modulate the expression of endogenous retrovirus-K (ERVK), a pathogenic viral genomic symbiont. Since ERVK is associated with motor neuron disease, such as Amyotrophic Lateral Sclerosis (ALS), we sought to determine if patients with SBMA exhibit evidence of ERVK reactivation. Results: Data from a pilot study demonstrate that peripheral blood mononuclear cell (PBMC) samples from controls and patients with SBMA were examined ex vivo for the expression of ERVK viral transcripts and proteins. No differences in ERVK RNA expression was observed between the clinical groups. In contrast, enhancement of processed ERVK Gag and integrase proteins were observed in SBMA-derived PBMC as compared to healthy control specimens. Increased ERVK protein maturation co-occurred with elevation in the expression of the pro-inflammatory transcription factor IRF1 in SBMA. Conclusions: Our findings indicate that ERVK viral protein maturation in SBMA is an unrecognized biomarker and facet of the disease. We discuss how our current understanding of ERVK-driven pathology may tie into key aspects of multi-system dysfunction in SBMA, with a focus on inflammation, proteinopathy, as well as DNA damage and repair.

  • Open Access English
    Authors: 
    Eric Eyolfson; Haris Malik; Richelle Mychasiuk;
    Publisher: Frontiers Media SA
    Project: CIHR , NSERC

    Children and adolescents have the highest rates of traumatic brain injury (TBI), with mild TBI (mTBI) accounting for most of these injuries. This demographic also often suffers from post-injury symptomologies that may persist for months. Telomere length (TL) has previously been used as a marker for outcomes following repetitive mild TBI (RmTBI) and it may be possible that telomere elongation can reduce post-traumatic behavioral impairments. Telomerase activator-65 (TA-65) is a telomerase small-molecule activator purified from the root of Chinese herbs that has been anecdotally reported to have anti-aging and life-extending potential. We hypothesized that RmTBI would shorten TL but administration of TA-65 would reverse RmTBI-induced telomere shortening and behavioral deficits. Male and female Sprague-Dawley rats were orally administered TA-65 or a placebo substance for 30 consecutive days [postnatal day (P) 25–55]. Following the injury protocol (mTBIs on P33, 36, and 40), rats went through a behavioral test battery designed to examine symptomologies commonly associated with mTBI (balance and motor coordination, exploratory behavior, short-term working memory, and anxiety- and depressive-like behaviors). TL in ear and brain tissue (prefrontal cortex and hippocampus) and relative expression of TERT and Tep1 via qPCR were assessed 15 days following the last injury. We observed a heterogenous response between males and females, with TA65 administration resulting in increased mRNA expression of TERT and Tep1 in female rats that experienced RmTBI, which was accompanied by some functional recovery on motor behavior and footslips in the beam walk task and depressive-like behavior in the forced swim task.

  • Open Access
    Authors: 
    Gabriela Ioachim; Howard J. M. Warren; Jocelyn M. Powers; Roland Staud; Caroline F. Pukall; Patrick W. Stroman;
    Publisher: Frontiers Media SA
    Project: NSERC

    Chronic pain associated with fibromyalgia (FM) affects a large portion of the population but the underlying mechanisms leading to this altered pain are still poorly understood. Evidence suggests that FM involves altered neural processes in the central nervous system and neuroimaging methods such as functional magnetic resonance imaging (fMRI) are used to reveal these underlying alterations. While many fMRI studies of FM have been conducted in the brain, recent evidence shows that the changes in pain processing in FM may be linked to autonomic and homeostatic dysregulation, thus requiring further investigation in the brainstem and spinal cord. Functional magnetic resonance imaging data from 15 women with FM and 15 healthy controls were obtained in the cervical spinal cord and brainstem at 3 tesla using previously established methods. In order to investigate differences in pain processing in these groups, participants underwent trials in which they anticipated and received a predictable painful stimulus, randomly interleaved with trials with no stimulus. Differences in functional connectivity between the groups were investigated by means of structural equation modeling. The results demonstrate significant differences in brainstem/spinal cord network connectivity between the FM and control groups which also correlated with individual differences in pain responses. The regions involved in these differences in connectivity included the LC, hypothalamus, PAG, and PBN, which are known to be associated with autonomic homeostatic regulation, including fight or flight responses. This study extends our understanding of altered neural processes associated with FM and the important link between sensory and autonomic regulation systems in this disorder.

  • Open Access English
    Authors: 
    Tore Nielsen; Tore Nielsen;
    Publisher: Frontiers Media S.A.
    Project: CIHR , NSERC

    Adverse childhood experiences can deleteriously affect future physical and mental health, increasing risk for many illnesses, including psychiatric problems, sleep disorders, and, according to the present hypothesis, idiopathic nightmares. Much like post-traumatic nightmares, which are triggered by trauma and lead to recurrent emotional dreaming about the trauma, idiopathic nightmares are hypothesized to originate in early adverse experiences that lead in later life to the expression of early memories and emotions in dream content. Accordingly, the objectives of this paper are to (1) review existing literature on sleep, dreaming and nightmares in relation to early adverse experiences, drawing upon both empirical studies of dreaming and nightmares and books and chapters by recognized nightmare experts and (2) propose a new approach to explaining nightmares that is based upon the Stress Acceleration Hypothesis of mental illness. The latter stipulates that susceptibility to mental illness is increased by adversity occurring during a developmentally sensitive window for emotional maturation—the infantile amnesia period—that ends around age 3½. Early adversity accelerates the neural and behavioral maturation of emotional systems governing the expression, learning, and extinction of fear memories and may afford short-term adaptive value. But it also engenders long-term dysfunctional consequences including an increased risk for nightmares. Two mechanisms are proposed: (1) disruption of infantile amnesia allows normally forgotten early childhood memories to influence later emotions, cognitions and behavior, including the common expression of threats in nightmares; (2) alterations of normal emotion regulation processes of both waking and sleep lead to increased fear sensitivity and less effective fear extinction. These changes influence an affect network previously hypothesized to regulate fear extinction during REM sleep, disruption of which leads to nightmares. This network consists of a fear circuit that includes amygdala, hippocampus, and medial prefrontal cortex and whose substantial overlap with the stress acceleration findings allows the latter to be incorporated into a wider, more developmentally coherent framework.

search
Include:
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
45 Research products, page 1 of 5
  • Open Access English
    Authors: 
    Arnaud Boujut; Arnaud Boujut; Lynn Valeyry Verty; Lynn Valeyry Verty; Samantha Maltezos; Samantha Maltezos; Maxime Lussier; Maxime Lussier; Samira Mellah; Louis Bherer; +5 more
    Publisher: Frontiers Media S.A.
    Project: NSERC

    Background: Working memory (WM) capacity declines with advancing age, which impacts the ability to carry out complex cognitive activities in everyday life. Updating and inhibition processes have been identified as some of the most critical attentional control processes of WM and are linked to age-related WM decline. The general aim of the Attentional Control Training in Older People (ACTOP) study was to perform a side-by-side comparison of updating and inhibition training to examine their respective efficacy and transfer in cognitively healthy older adults.Method: The study was a three-arm, double-blind, randomized controlled trial registered with the US National Institutes of Health clinical trials registry. Ninety older adults were randomly assigned to 12 half-hour sessions of updating (N-back type exercises), inhibition (Stroop-like exercises) computerized training or active control (general knowledge quiz game). A group of thirty younger adults completed all proximal and WM transfer tasks without training to assess age-related deficits prior to training and whether training reduces these deficits.Results: Piecewise mixed models show quick improvement of performance during training for both updating and inhibition training. During updating training, the progression was more pronounced for the most difficult (3-back) than for the least (1-back) difficult level until the ninth session. Updating and inhibition training groups improved performance on all proximal and WM transfer measures but these improvements did not differ from the active control group. Younger adults outperformed older ones on all transfer tasks prior to training. However, this was no longer the case following training for two transfer tasks regardless of the training group.Conclusion: The overall results from this study suggest that attentional control training is effective in improving updating and inhibition performance on training tasks. The optimal dose to achieve efficacy is ~9 half-hour sessions and the dose effect was related to difficulty level for updating training. Despite an overall improvement of older adults on all transfer tasks, neither updating nor inhibition training provided additional improvements in comparison with the active control condition. This suggests that the efficacy of process-based training does not directly affect transfer tasks.Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT03532113

  • Open Access
    Authors: 
    Christin M. Sadler; Aline Tiemi Kami; Julie Nantel; Jonathan Lommen; Anthony N. Carlsen;
    Publisher: Frontiers Media SA
    Project: NSERC

    BackgroundTranscranial direct current stimulation (tDCS) has been shown to modulate cortical motor excitability and improve bradykinesia symptoms in Parkinson's disease. It is unclear how targeting different cortical motor areas with tDCS may differentially influence upper limb function for individuals diagnosed with PD.ObjectiveThis study investigated whether anodal tDCS applied separately to the primary motor cortex and the supplementary motor area would improve upper limb function for individuals with Parkinson's disease. In addition, a startling acoustic stimulus was used to differentiate between the effect of stimulation on motor preparatory and initiation processes associated with upper limb movements.MethodsEleven participants with idiopathic Parkinson's disease performed two upper limb simple reaction time tasks, involving elbow extension or a button press before and after either anodal tDCS or sham tDCS was applied over the primary motor cortex or supplementary motor area. A loud, startling stimulus was presented on a selection of trials to involuntarily trigger the prepared action.ResultsAnodal tDCS led to improved premotor reaction time in both tasks, but this was moderated by reaction time in pre-tDCS testing, such that individuals with slower pre-tDCS reaction time showed the greatest reaction time improvements. Startle-trial reaction time was not modified following tDCS, suggesting that the stimulation primarily modulated response initiation processes.ConclusionAnodal tDCS improved response initiation speed, but only in slower reacting individuals with PD. However, no differences attributable to tDCS were observed in clinical measures of bradykinesia or kinematic variables, suggesting that reaction time may represent a more sensitive measure of some components of bradykinesia.

  • Open Access English
    Authors: 
    Gabriela S. Gilmour; Davide Martino; Davide Martino; Karen Hunka; Pia Lawrence; Zelma H. T. Kiss; Zelma H. T. Kiss; Veronica Bruno; Veronica Bruno;
    Publisher: Frontiers Media S.A.
    Project: NSERC

    Introduction: Essential tremor (ET) is a tremor syndrome characterized by bilateral, upper limb action tremor. Essential tremor-plus (ET-plus) describes ET patients with additional neurologic signs. It is unknown whether there is a difference in response to treatment with ventralis intermedius nucleus deep brain stimulation (VIM DBS) in patients with ET and ET-plus. Due to potential variability in underlying etiology in ET-plus, there is a concern that ET-plus patients may have worse outcomes. The aim of this study was to identify whether patients with ET-plus have worse tremor outcomes after VIM DBS than patients with ET.Methods: This is a retrospective chart and video review evaluating VIM DBS outcomes by comparing changes from baseline in the Fahn-Tolosa-Marin Tremor Rating Scale Part B (FTM-B) for the treated limb between patients with ET and ET-plus at follow-up examinations. Patients were re-classified as having ET or ET-plus using pre-operative examination videos by two independent movement disorders neurologists blinded to patient characteristics. As a secondary outcome, we evaluated for correlations and potential predictors of treatment response.Results: Twenty-six patients were included: 13 with ET, 13 with ET-plus. There were no significant differences in the change in FTM-B scores between the ET and ET-plus patients at each follow-up examination. None of the included patients developed new symptoms compatible with dystonia, parkinsonism or gait disturbances.Conclusions: Patients with ET-plus had tremor improvement from VIM DBS, with no differences when compared to those with ET, without emergence of postoperative neurological issues. Patients with ET-plus should still be considered good candidates for VIM DBS for treatment of tremor.

  • Open Access English
    Authors: 
    Brian D. Robertson; Abdullah S. Al Jaja; Abdullah S. Al Jaja; Alex A. MacDonald; Nole M. Hiebert; Nole M. Hiebert; Ruzbeh Tamjeedi; Ken N. Seergobin; Ute I. Schwarz; Ute I. Schwarz; +6 more
    Publisher: Frontiers Media S.A.
    Country: Canada
    Project: NSERC

    In Parkinson's disease (PD), cognitive functions mediated by brain regions innervated by ventral tegmental area (VTA) worsen with dopamine replacement therapy, whereas processes relying on regions innervated by the substantia nigra pars compacta (SNc) improve. The SLC6A3 gene encodes the dopamine transporter (DAT). The common 9R polymorphism produces higher DAT concentrations and consequently lower baseline dopamine than SLC6A3 wildtype. Whether SLC6A3 genotype modulates the effect of dopaminergic therapy on cognition in PD is not known. We investigated the effect of dopaminergic therapy and SLC6A3 genotype on encoding and recall of abstract images using the Aggie Figures Learning Test in PD patients. Encoding depends upon brain regions innervated by the VTA, whereas recall is mediated by widespread brain regions, a number innervated by the SNc. We found that dopaminergic therapy worsened encoding of abstract images in 9R carriers only. In contrast, dopaminergic therapy improved recall of abstract images in all PD patients, irrespective of SLC6A3 genotype. Our findings suggest that 9R-carrier PD patients are more predisposed to dopamine overdose and medication-induced impairment of cognitive functions mediated by VTA-innervated brain regions. Interestingly, PD patients without the 9R polymorphism did not show such an impairment. SLC6A3 genotype does not modulate the dopaminergic therapy-induced improvement of functions mediated by SNc-innervated regions in PD patients.

  • Open Access English
    Authors: 
    Quincy J. Almeida; Matt J. N. Brown;
    Publisher: Frontiers Media S.A.
    Project: NSERC

    Bradykinesia is a well-documented DOPA-responsive clinical feature of Parkinson’s disease (PD). While amplitude deficits (hypokinesia) are a key component of this slowness, it is important to consider how dopamine influences both the amplitude (hypokinesia) and frequency components of bradykinesia when a bimanually coordinated movement is required. Based on the notion that the basal ganglia are associated with sensory deficits, the influence of dopaminergic replacement on sensory feedback conditions during bimanual coordination was also evaluated. Bimanual movements were examined in PD and healthy comparisons in an unconstrained three-dimensional coordination task. PD were tested “off” (overnight withdrawal of dopaminergic treatment) and “on” (peak dose of dopaminergic treatment), while the healthy group was evaluated for practice effects across two sessions. Required cycle frequency (increased within each trial from 0.75 to 2 Hz), type of visual feedback (no vision, normal vision, and augmented vision), and coordination pattern (symmetrical in-phase and non-symmetrical anti-phase) were all manipulated. Overall, coordination (mean accuracy and standard deviation of relative phase) and amplitude deficits during bimanual coordination were confirmed in PD participants. In addition, significant correlations were identified between severity of motor symptoms as well as bradykinesia to greater coordination deficits (accuracy and stability) in PD “off” group. However, even though amplitude deficits (hypokinesia) improved with dopaminergic replacement, it did not improve bimanual coordination performance (accuracy or stability) in PD patients from “off” to “on.” Interestingly, while coordination performance in both groups suffered in the augmented vision condition, the amplitude of the more affected limb of PD was notably influenced. It can be concluded that DOPA-responsive hypokinesia contributes to, but is not directly responsible for bimanual coordination impairments in PD. It is likely that bimanual coordination deficits in PD are caused by the combination of dopaminergic system dysfunction as well as other neural impairments that may be DOPA-resistant or related to non-dopaminergic pathways.

  • Open Access English
    Authors: 
    Todd Nelson; Todd Nelson; Lan-Xin Zhang; Lan-Xin Zhang; Hui Guo; Hui Guo; Luis Nacul; Luis Nacul; Xiaowei Song; Xiaowei Song;
    Publisher: Frontiers Media S.A.
    Country: United Kingdom
    Project: NSERC

    Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a multisystem medical condition with heterogeneous symptom expression. Currently, there is no effective cure or treatment for the standard care of patients. A variety of ME/CFS symptoms can be linked to the vital life functions of the brainstem, the lower extension of the brain best known as the hub relaying information back and forth between the cerebral cortex and various parts of the body.Objective/Methods: Over the past decade, Magnetic Resonance Imaging (MRI) studies have emerged to understand ME/CFS with interesting findings, but there has lacked a synthesized evaluation of what has been found thus far regarding the involvement of the brainstem. We conducted this study to review and evaluate the recent MRI findings via a literature search of the MEDLINE database, from which 11 studies met the eligibility criteria.Findings: Data showed that MRI studies frequently reported structural changes in the white and gray matter. Abnormalities of the functional connectivity within the brainstem and with other brain regions have also been found. The studies have suggested possible mechanisms including astrocyte dysfunction, cerebral perfusion impairment, impaired nerve conduction, and neuroinflammation involving the brainstem, which may at least partially explain a substantial portion of the ME/CFS symptoms and their heterogeneous presentations in individual patients.Conclusions: This review draws research attention to the role of the brainstem in ME/CFS, helping enlighten future work to uncover the pathologies and mechanisms of this complex medical condition, for improved management and patient care.

  • Open Access
    Authors: 
    Cody Rex; Marie-Josée Nadeau; Renée N. Douville; Kerri Schellenberg;
    Publisher: Frontiers Media SA
    Project: NSERC

    Background: Spinal and Bulbar Muscular Atrophy (SBMA) is caused by the extension of the polyglutamine tract within the androgen receptor (AR) gene, and results in a multisystem presentation, including the degeneration of lower motor neurons. The androgen receptor (AR) is known to modulate the expression of endogenous retrovirus-K (ERVK), a pathogenic viral genomic symbiont. Since ERVK is associated with motor neuron disease, such as Amyotrophic Lateral Sclerosis (ALS), we sought to determine if patients with SBMA exhibit evidence of ERVK reactivation. Results: Data from a pilot study demonstrate that peripheral blood mononuclear cell (PBMC) samples from controls and patients with SBMA were examined ex vivo for the expression of ERVK viral transcripts and proteins. No differences in ERVK RNA expression was observed between the clinical groups. In contrast, enhancement of processed ERVK Gag and integrase proteins were observed in SBMA-derived PBMC as compared to healthy control specimens. Increased ERVK protein maturation co-occurred with elevation in the expression of the pro-inflammatory transcription factor IRF1 in SBMA. Conclusions: Our findings indicate that ERVK viral protein maturation in SBMA is an unrecognized biomarker and facet of the disease. We discuss how our current understanding of ERVK-driven pathology may tie into key aspects of multi-system dysfunction in SBMA, with a focus on inflammation, proteinopathy, as well as DNA damage and repair.

  • Open Access English
    Authors: 
    Eric Eyolfson; Haris Malik; Richelle Mychasiuk;
    Publisher: Frontiers Media SA
    Project: CIHR , NSERC

    Children and adolescents have the highest rates of traumatic brain injury (TBI), with mild TBI (mTBI) accounting for most of these injuries. This demographic also often suffers from post-injury symptomologies that may persist for months. Telomere length (TL) has previously been used as a marker for outcomes following repetitive mild TBI (RmTBI) and it may be possible that telomere elongation can reduce post-traumatic behavioral impairments. Telomerase activator-65 (TA-65) is a telomerase small-molecule activator purified from the root of Chinese herbs that has been anecdotally reported to have anti-aging and life-extending potential. We hypothesized that RmTBI would shorten TL but administration of TA-65 would reverse RmTBI-induced telomere shortening and behavioral deficits. Male and female Sprague-Dawley rats were orally administered TA-65 or a placebo substance for 30 consecutive days [postnatal day (P) 25–55]. Following the injury protocol (mTBIs on P33, 36, and 40), rats went through a behavioral test battery designed to examine symptomologies commonly associated with mTBI (balance and motor coordination, exploratory behavior, short-term working memory, and anxiety- and depressive-like behaviors). TL in ear and brain tissue (prefrontal cortex and hippocampus) and relative expression of TERT and Tep1 via qPCR were assessed 15 days following the last injury. We observed a heterogenous response between males and females, with TA65 administration resulting in increased mRNA expression of TERT and Tep1 in female rats that experienced RmTBI, which was accompanied by some functional recovery on motor behavior and footslips in the beam walk task and depressive-like behavior in the forced swim task.

  • Open Access
    Authors: 
    Gabriela Ioachim; Howard J. M. Warren; Jocelyn M. Powers; Roland Staud; Caroline F. Pukall; Patrick W. Stroman;
    Publisher: Frontiers Media SA
    Project: NSERC

    Chronic pain associated with fibromyalgia (FM) affects a large portion of the population but the underlying mechanisms leading to this altered pain are still poorly understood. Evidence suggests that FM involves altered neural processes in the central nervous system and neuroimaging methods such as functional magnetic resonance imaging (fMRI) are used to reveal these underlying alterations. While many fMRI studies of FM have been conducted in the brain, recent evidence shows that the changes in pain processing in FM may be linked to autonomic and homeostatic dysregulation, thus requiring further investigation in the brainstem and spinal cord. Functional magnetic resonance imaging data from 15 women with FM and 15 healthy controls were obtained in the cervical spinal cord and brainstem at 3 tesla using previously established methods. In order to investigate differences in pain processing in these groups, participants underwent trials in which they anticipated and received a predictable painful stimulus, randomly interleaved with trials with no stimulus. Differences in functional connectivity between the groups were investigated by means of structural equation modeling. The results demonstrate significant differences in brainstem/spinal cord network connectivity between the FM and control groups which also correlated with individual differences in pain responses. The regions involved in these differences in connectivity included the LC, hypothalamus, PAG, and PBN, which are known to be associated with autonomic homeostatic regulation, including fight or flight responses. This study extends our understanding of altered neural processes associated with FM and the important link between sensory and autonomic regulation systems in this disorder.

  • Open Access English
    Authors: 
    Tore Nielsen; Tore Nielsen;
    Publisher: Frontiers Media S.A.
    Project: CIHR , NSERC

    Adverse childhood experiences can deleteriously affect future physical and mental health, increasing risk for many illnesses, including psychiatric problems, sleep disorders, and, according to the present hypothesis, idiopathic nightmares. Much like post-traumatic nightmares, which are triggered by trauma and lead to recurrent emotional dreaming about the trauma, idiopathic nightmares are hypothesized to originate in early adverse experiences that lead in later life to the expression of early memories and emotions in dream content. Accordingly, the objectives of this paper are to (1) review existing literature on sleep, dreaming and nightmares in relation to early adverse experiences, drawing upon both empirical studies of dreaming and nightmares and books and chapters by recognized nightmare experts and (2) propose a new approach to explaining nightmares that is based upon the Stress Acceleration Hypothesis of mental illness. The latter stipulates that susceptibility to mental illness is increased by adversity occurring during a developmentally sensitive window for emotional maturation—the infantile amnesia period—that ends around age 3½. Early adversity accelerates the neural and behavioral maturation of emotional systems governing the expression, learning, and extinction of fear memories and may afford short-term adaptive value. But it also engenders long-term dysfunctional consequences including an increased risk for nightmares. Two mechanisms are proposed: (1) disruption of infantile amnesia allows normally forgotten early childhood memories to influence later emotions, cognitions and behavior, including the common expression of threats in nightmares; (2) alterations of normal emotion regulation processes of both waking and sleep lead to increased fear sensitivity and less effective fear extinction. These changes influence an affect network previously hypothesized to regulate fear extinction during REM sleep, disruption of which leads to nightmares. This network consists of a fear circuit that includes amygdala, hippocampus, and medial prefrontal cortex and whose substantial overlap with the stress acceleration findings allows the latter to be incorporated into a wider, more developmentally coherent framework.