search
Include:
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products, page 1 of 1

  • Canada
  • Open Access
  • CH
  • CL
  • Hydrology and Earth System Sciences (HESS)
  • Energy Research

Relevance
arrow_drop_down
  • Open Access English
    Authors: 
    Miguel Potes; Maria João Costa; Rui Salgado;
    Publisher: European Geosciences Union - EGU
    Country: Portugal
    Project: FCT | PTDC/CTE-ATM/102142/2008 (PTDC/CTE-ATM/102142/2008), FCT | PTDC/CTE-ATM/65307/2006 (PTDC/CTE-ATM/65307/2006), FCT | SFRH/BD/45577/2008 (SFRH/BD/45577/2008)

    Abstract. The quality control and monitoring of surface freshwaters is crucial, since some of these water masses constitute essential renewable water resources for a variety of purposes. In addition, changes in the surface water composition may affect the physical properties of lake water, such as temperature, which in turn may impact the interactions of the water surface with the lower atmosphere. The use of satellite remote sensing to estimate the water turbidity of Alqueva reservoir, located in the south of Portugal, is explored. A validation study of the satellite derived water leaving spectral reflectance is firstly presented, using data taken during three field campaigns carried out during 2010 and early 2011. Secondly, an empirical algorithm to estimate lake water surface turbidity from the combination of in situ and satellite measurements is proposed. Finally, the importance of water turbidity on the surface energy balance is tested in the form of a study of the sensitivity of a lake model to the extinction coefficient of water (estimated from turbidity), showing that this is an important parameter that affects the lake surface temperature.

  • Open Access English
    Authors: 
    Sebastian A. Krogh; Lucia Scaff; Gary Sterle; James W. Kirchner; B. L. Gordon; Adrian A. Harpold;

    Climate warming may cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening water supplies and ecosystems. Few observations allow separating rain and snowmelt contributions to streamflow, so physically based models are needed for hydrological predictions and analyses. We develop an observational technique for detecting streamflow responses to snowmelt using incoming solar radiation and diel (daily) cycles of streamflow. We measure the 20th percentile of snowmelt days (DOS20), across 31 watersheds in the western US, as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOS20 varies from mid-January to late May, with warmer sites having earlier and more intermittent snowmelt-mediated streamflow. Mean annual DOS20 strongly correlates with the dates of 25 % and 50 % annual streamflow volume (DOQ25 and DOQ50, both R2 = 0.85), suggesting that a one-day earlier DOS20 corresponds with a one-day earlier DOQ25 and 0.7-day earlier DOQ50. Empirical projections of future DOS20 (RCP8.5, late 21st century), using space-for-time substitution, show that DOS20 will occur 11 ± 4 days earlier per 1 °C of warming, and that colder places (mean November–February air temperature, TNDJF <−8 °C) are 70 % more sensitive to climate change on average than warmer places (TNDJF > 0 °C). Moreover, empirical space-for-time based projections of DOQ25 and DOQ50 are about four and two times more sensitive to earlier streamflow than those from NoahMP-WRF. Given the importance of changing streamflow timing for headwater resources, snowmelt detection methods such as DOS20 based on diel streamflow cycles may constrain hydrological models and improve hydrological predictions.

  • Publication . Article . Other literature type . 2014
    Open Access English
    Authors: 
    Kathrin Menberg; Phillip Blum; Barret L. Kurylyk; Peter Bayer;
    Publisher: Copernicus Publications
    Countries: Germany, Switzerland
    Project: NSERC

    Climate change is known to have a considerable influence on many components of the hydrological cycle. Yet, the implications for groundwater temperature, as an important driver for groundwater quality, thermal use and storage, are not yet comprehensively understood. Furthermore, few studies have examined the implications of climate-change-induced groundwater temperature rise for groundwater-dependent ecosystems. Here, we examine the coupling of atmospheric and groundwater warming by employing stochastic and deterministic models. Firstly, several decades of temperature time series are statistically analyzed with regard to climate regime shifts (CRSs) in the long-term mean. The observed increases in shallow groundwater temperatures can be associated with preceding positive shifts in regional surface air temperatures, which are in turn linked to global air temperature changes. The temperature data are also analyzed with an analytical solution to the conduction–advection heat transfer equation to investigate how subsurface heat transfer processes control the propagation of the surface temperature signals into the subsurface. In three of the four monitoring wells, the predicted groundwater temperature increases driven by the regime shifts at the surface boundary condition generally concur with the observed groundwater temperature trends. Due to complex interactions at the ground surface and the heat capacity of the unsaturated zone, the thermal signals from distinct changes in air temperature are damped and delayed in the subsurface, causing a more gradual increase in groundwater temperatures. These signals can have a significant impact on large-scale groundwater temperatures in shallow and economically important aquifers. These findings demonstrate that shallow groundwater temperatures have responded rapidly to recent climate change and thus provide insight into the vulnerability of aquifers and groundwater-dependent ecosystems to future climate change. Hydrology and Earth System Sciences, 18 (11) ISSN:1027-5606 ISSN:1607-7938

  • Publication . Article . Other literature type . 2011 . Embargo End Date: 01 Jan 2011
    Open Access English
    Authors: 
    Daniel Viviroli; D.R. Archer; Wouter Buytaert; Hayley J. Fowler; Gregory B. Greenwood; Alan F. Hamlet; Y Huang; G Koboltschnig; M I Litaor; Juan I. López-Moreno; +6 more
    Publisher: European Geosciences Union EGU
    Country: Switzerland

    Abstract. Mountains are essential sources of freshwater for our world, but their role in global water resources could well be significantly altered by climate change. How well do we understand these potential changes today, and what are implications for water resources management, climate change adaptation, and evolving water policy? To answer above questions, we have examined 11 case study regions with the goal of providing a global overview, identifying research gaps and formulating recommendations for research, management and policy. After setting the scene regarding water stress, water management capacity and scientific capacity in our case study regions, we examine the state of knowledge in water resources from a highland-lowland viewpoint, focusing on mountain areas on the one hand and the adjacent lowland areas on the other hand. Based on this review, research priorities are identified, including precipitation, snow water equivalent, soil parameters, evapotranspiration and sublimation, groundwater as well as enhanced warming and feedback mechanisms. In addition, the importance of environmental monitoring at high altitudes is highlighted. We then make recommendations how advancements in the management of mountain water resources under climate change could be achieved in the fields of research, water resources management and policy as well as through better interaction between these fields. We conclude that effective management of mountain water resources urgently requires more detailed regional studies and more reliable scenario projections, and that research on mountain water resources must become more integrative by linking relevant disciplines. In addition, the knowledge exchange between managers and researchers must be improved and oriented towards long-term continuous interaction.

  • Open Access English
    Authors: 
    Rosanna Lane; Gemma Coxon; Jim Freer; Jan Seibert; Thorsten Wagener;
    Countries: United Kingdom, Switzerland

    Climate change may significantly increase flood risk globally, but there are large uncertainties in both future climatic changes and how these propagate into changing river flows. Here, the impact of climate change on the magnitude and frequency of high flows is analysed for Great Britain (GB) to provide the first spatially consistent GB projections to include both climate ensembles and hydrological model parameter uncertainties. We use the latest high-resolution (12 km) regional climate model ensemble from the UK Climate Projections (UKCP18). These projections are based on a perturbed-physics ensemble of 12 regional climate model simulations and allow exploration of climate model uncertainty beyond the variability caused by the use of different models. We model 346 larger (>144 km2) catchments across GB using the DECIPHeR hydrological modelling framework. Generally, results indicated an increase in the magnitude and frequency of high flows (Q10, Q1, and annual maximum) along the western coast of GB in the future (2050–2075), with increases in annual maximum flows of up to 65 % for western Scotland. In contrast, median flows (Q50) were projected to decrease across GB. Even when using an ensemble based on a single regional climate model (RCM) structure, all flow projections contained large uncertainties. While the RCM parameters were the largest source of uncertainty overall, hydrological modelling uncertainties were considerable in eastern and south-eastern England. Regional variations in flow projections were found to relate to (i) differences in climatic change and (ii) catchment conditions during the baseline period as characterised by the runoff coefficient (mean discharge divided by mean precipitation). Importantly, increased heavy-precipitation events (defined by an increase in 99th percentile precipitation) did not always result in increased flood flows for catchments with low runoff coefficients, highlighting the varying factors leading to changes in high flows. These results provide a national overview of climate change impacts on high flows across GB, which will inform climate change adaptation, and highlight the impact of hydrological model parameter uncertainties when modelling climate change impact on high flows.

search
Include:
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products, page 1 of 1
  • Open Access English
    Authors: 
    Miguel Potes; Maria João Costa; Rui Salgado;
    Publisher: European Geosciences Union - EGU
    Country: Portugal
    Project: FCT | PTDC/CTE-ATM/102142/2008 (PTDC/CTE-ATM/102142/2008), FCT | PTDC/CTE-ATM/65307/2006 (PTDC/CTE-ATM/65307/2006), FCT | SFRH/BD/45577/2008 (SFRH/BD/45577/2008)

    Abstract. The quality control and monitoring of surface freshwaters is crucial, since some of these water masses constitute essential renewable water resources for a variety of purposes. In addition, changes in the surface water composition may affect the physical properties of lake water, such as temperature, which in turn may impact the interactions of the water surface with the lower atmosphere. The use of satellite remote sensing to estimate the water turbidity of Alqueva reservoir, located in the south of Portugal, is explored. A validation study of the satellite derived water leaving spectral reflectance is firstly presented, using data taken during three field campaigns carried out during 2010 and early 2011. Secondly, an empirical algorithm to estimate lake water surface turbidity from the combination of in situ and satellite measurements is proposed. Finally, the importance of water turbidity on the surface energy balance is tested in the form of a study of the sensitivity of a lake model to the extinction coefficient of water (estimated from turbidity), showing that this is an important parameter that affects the lake surface temperature.

  • Open Access English
    Authors: 
    Sebastian A. Krogh; Lucia Scaff; Gary Sterle; James W. Kirchner; B. L. Gordon; Adrian A. Harpold;

    Climate warming may cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening water supplies and ecosystems. Few observations allow separating rain and snowmelt contributions to streamflow, so physically based models are needed for hydrological predictions and analyses. We develop an observational technique for detecting streamflow responses to snowmelt using incoming solar radiation and diel (daily) cycles of streamflow. We measure the 20th percentile of snowmelt days (DOS20), across 31 watersheds in the western US, as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOS20 varies from mid-January to late May, with warmer sites having earlier and more intermittent snowmelt-mediated streamflow. Mean annual DOS20 strongly correlates with the dates of 25 % and 50 % annual streamflow volume (DOQ25 and DOQ50, both R2 = 0.85), suggesting that a one-day earlier DOS20 corresponds with a one-day earlier DOQ25 and 0.7-day earlier DOQ50. Empirical projections of future DOS20 (RCP8.5, late 21st century), using space-for-time substitution, show that DOS20 will occur 11 ± 4 days earlier per 1 °C of warming, and that colder places (mean November–February air temperature, TNDJF <−8 °C) are 70 % more sensitive to climate change on average than warmer places (TNDJF > 0 °C). Moreover, empirical space-for-time based projections of DOQ25 and DOQ50 are about four and two times more sensitive to earlier streamflow than those from NoahMP-WRF. Given the importance of changing streamflow timing for headwater resources, snowmelt detection methods such as DOS20 based on diel streamflow cycles may constrain hydrological models and improve hydrological predictions.

  • Publication . Article . Other literature type . 2014
    Open Access English
    Authors: 
    Kathrin Menberg; Phillip Blum; Barret L. Kurylyk; Peter Bayer;
    Publisher: Copernicus Publications
    Countries: Germany, Switzerland
    Project: NSERC

    Climate change is known to have a considerable influence on many components of the hydrological cycle. Yet, the implications for groundwater temperature, as an important driver for groundwater quality, thermal use and storage, are not yet comprehensively understood. Furthermore, few studies have examined the implications of climate-change-induced groundwater temperature rise for groundwater-dependent ecosystems. Here, we examine the coupling of atmospheric and groundwater warming by employing stochastic and deterministic models. Firstly, several decades of temperature time series are statistically analyzed with regard to climate regime shifts (CRSs) in the long-term mean. The observed increases in shallow groundwater temperatures can be associated with preceding positive shifts in regional surface air temperatures, which are in turn linked to global air temperature changes. The temperature data are also analyzed with an analytical solution to the conduction–advection heat transfer equation to investigate how subsurface heat transfer processes control the propagation of the surface temperature signals into the subsurface. In three of the four monitoring wells, the predicted groundwater temperature increases driven by the regime shifts at the surface boundary condition generally concur with the observed groundwater temperature trends. Due to complex interactions at the ground surface and the heat capacity of the unsaturated zone, the thermal signals from distinct changes in air temperature are damped and delayed in the subsurface, causing a more gradual increase in groundwater temperatures. These signals can have a significant impact on large-scale groundwater temperatures in shallow and economically important aquifers. These findings demonstrate that shallow groundwater temperatures have responded rapidly to recent climate change and thus provide insight into the vulnerability of aquifers and groundwater-dependent ecosystems to future climate change. Hydrology and Earth System Sciences, 18 (11) ISSN:1027-5606 ISSN:1607-7938

  • Publication . Article . Other literature type . 2011 . Embargo End Date: 01 Jan 2011
    Open Access English
    Authors: 
    Daniel Viviroli; D.R. Archer; Wouter Buytaert; Hayley J. Fowler; Gregory B. Greenwood; Alan F. Hamlet; Y Huang; G Koboltschnig; M I Litaor; Juan I. López-Moreno; +6 more
    Publisher: European Geosciences Union EGU
    Country: Switzerland

    Abstract. Mountains are essential sources of freshwater for our world, but their role in global water resources could well be significantly altered by climate change. How well do we understand these potential changes today, and what are implications for water resources management, climate change adaptation, and evolving water policy? To answer above questions, we have examined 11 case study regions with the goal of providing a global overview, identifying research gaps and formulating recommendations for research, management and policy. After setting the scene regarding water stress, water management capacity and scientific capacity in our case study regions, we examine the state of knowledge in water resources from a highland-lowland viewpoint, focusing on mountain areas on the one hand and the adjacent lowland areas on the other hand. Based on this review, research priorities are identified, including precipitation, snow water equivalent, soil parameters, evapotranspiration and sublimation, groundwater as well as enhanced warming and feedback mechanisms. In addition, the importance of environmental monitoring at high altitudes is highlighted. We then make recommendations how advancements in the management of mountain water resources under climate change could be achieved in the fields of research, water resources management and policy as well as through better interaction between these fields. We conclude that effective management of mountain water resources urgently requires more detailed regional studies and more reliable scenario projections, and that research on mountain water resources must become more integrative by linking relevant disciplines. In addition, the knowledge exchange between managers and researchers must be improved and oriented towards long-term continuous interaction.

  • Open Access English
    Authors: 
    Rosanna Lane; Gemma Coxon; Jim Freer; Jan Seibert; Thorsten Wagener;
    Countries: United Kingdom, Switzerland

    Climate change may significantly increase flood risk globally, but there are large uncertainties in both future climatic changes and how these propagate into changing river flows. Here, the impact of climate change on the magnitude and frequency of high flows is analysed for Great Britain (GB) to provide the first spatially consistent GB projections to include both climate ensembles and hydrological model parameter uncertainties. We use the latest high-resolution (12 km) regional climate model ensemble from the UK Climate Projections (UKCP18). These projections are based on a perturbed-physics ensemble of 12 regional climate model simulations and allow exploration of climate model uncertainty beyond the variability caused by the use of different models. We model 346 larger (>144 km2) catchments across GB using the DECIPHeR hydrological modelling framework. Generally, results indicated an increase in the magnitude and frequency of high flows (Q10, Q1, and annual maximum) along the western coast of GB in the future (2050–2075), with increases in annual maximum flows of up to 65 % for western Scotland. In contrast, median flows (Q50) were projected to decrease across GB. Even when using an ensemble based on a single regional climate model (RCM) structure, all flow projections contained large uncertainties. While the RCM parameters were the largest source of uncertainty overall, hydrological modelling uncertainties were considerable in eastern and south-eastern England. Regional variations in flow projections were found to relate to (i) differences in climatic change and (ii) catchment conditions during the baseline period as characterised by the runoff coefficient (mean discharge divided by mean precipitation). Importantly, increased heavy-precipitation events (defined by an increase in 99th percentile precipitation) did not always result in increased flood flows for catchments with low runoff coefficients, highlighting the varying factors leading to changes in high flows. These results provide a national overview of climate change impacts on high flows across GB, which will inform climate change adaptation, and highlight the impact of hydrological model parameter uncertainties when modelling climate change impact on high flows.