Filters
Clear AllYear range
-chevron_right GOField of Science [Beta] (67)
Funding Stream (100)
Country (84)
Source (100)
Research community (20)
Loading
description Publicationkeyboard_double_arrow_right Article 2015Public Library of Science (PLoS) NIH | UC Davis Alzheimer's Core..., NIH | "MR Morphometrics and Cog..., CIHR +1 projectsNIH| UC Davis Alzheimer's Core Center ,NIH| "MR Morphometrics and Cognitive Decline Rate in Large-Scale Aging Studies" ,CIHR ,NIH| Alzheimers Disease Neuroimaging InitiativeSuping Cai; Liyu Huang; Jia Zou; Longlong Jing; Buzhong Zhai; Gongjun Ji; Karen M von Deneen; Junchan Ren; Aifeng Ren; Alzheimer’s Disease Neuroimaging Initiative;We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer's disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0115573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0115573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012 Spain, France, Denmark, France, NetherlandsElsevier BV CIHR, NIH | Alzheimers Disease Neuroi..., NIH | UC Davis Alzheimer's Core... +1 projectsCIHR ,NIH| Alzheimers Disease Neuroimaging Initiative ,NIH| UC Davis Alzheimer's Core Center ,NIH| "MR Morphometrics and Cognitive Decline Rate in Large-Scale Aging Studies"Vladimir Fonov; D. Louis Collins; Brandon Whitcher; Hakon Grydeland; Pierrick Coupe; Yongxia (Sharon) Zhou; Lasse Riis ؘstergaard; Pierre Payoux; Simon Eskildsen; Jeffrey Looi; Eric Jouvent; Jens Pruessner; Harald Hampel; Christian Gaser; Freimut Juengling; Herve Lemaitre;Brain extraction is an important step in the analysis of brain images. The variability in brain morphology and the difference in intensity characteristics due to imaging sequences make the development of a general purpose brain extraction algorithm challenging. To address this issue, we propose a new robust method (BEaST) dedicated to produce consistent and accurate brain extraction. This method is based on nonlocal segmentation embedded in a multi-resolution framework. A library of 80 priors is semi-automatically constructed from the NIH-sponsored MRI study of normal brain development, the International Consortium for Brain Mapping, and the Alzheimer's Disease Neuroimaging Initiative databases. In testing, a mean Dice similarity coefficient of 0.9834 ± 0.0053 was obtained when performing leave-one-out cross validation selecting only 20 priors from the library. Validation using the online Segmentation Validation Engine resulted in a top ranking position with a mean Dice coefficient of 0.9781 ± 0.0047. Robustness of BEaST is demonstrated on all baseline ADNI data, resulting in a very low failure rate. The segmentation accuracy of the method is better than two widely used publicly available methods and recent state-of-the-art hybrid approaches. BEaST provides results comparable to a recent label fusion approach, while being 40 times faster and requiring a much smaller library of priors. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514, and the Dana Foundation.
HAL-Inserm; Mémoires... arrow_drop_down HAL-Inserm; Mémoires en Sciences de l'Information et de la Communication; Hal-DiderotOther literature type . Article . 2012VBN; Aalborg University Research PortalArticle . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroimage.2011.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu373 citations 373 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 189visibility views 189 download downloads 1,341 Powered bymore_vert HAL-Inserm; Mémoires... arrow_drop_down HAL-Inserm; Mémoires en Sciences de l'Information et de la Communication; Hal-DiderotOther literature type . Article . 2012VBN; Aalborg University Research PortalArticle . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroimage.2011.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2018figshare FCT | NEUROCLINOMICS2, CIHR, FCT | SFRH/BD/118872/2016 +2 projectsFCT| NEUROCLINOMICS2 ,CIHR ,FCT| SFRH/BD/118872/2016 ,FCT| LARGE-SCALE INFORMATICS SYSTEMS LABORATORY ,NIH| Alzheimers Disease Neuroimaging InitiativePereira, Telma; Ferreira, Francisco; Cardoso, Sandra; Silva, Dina; Mendonça, Alexandre; Guerreiro, Manuela; Madeira, Sara;Stability and classification performance of classification models learnt with an incremental number of (ranked) features and using NB, DT, LR, SVM Poly and SVM RBF, per time windows, using ADNI and CCC data. RPT thresholds with β set as 0.1, 1 and 10 are illustrated. (DOCX 2920 kb)
figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.7489904.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert figshare arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.7489904.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2017Embargo end date: 01 Jan 2017arXiv NSERC, NIH | Alzheimers Disease Neuroi..., CIHRNSERC ,NIH| Alzheimers Disease Neuroimaging Initiative ,CIHRDansereau, Christian; Tam, Angela; Badhwar, AmanPreet; Urchs, Sebastian; Orban, Pierre; Rosa-Neto, Pedro; Bellec, Pierre;Early prognosis of Alzheimer's dementia is hard. Mild cognitive impairment (MCI) typically precedes Alzheimer's dementia, yet only a fraction of MCI individuals will progress to dementia, even when screened using biomarkers. We propose here to identify a subset of individuals who share a common brain signature highly predictive of oncoming dementia. This signature was composed of brain atrophy and functional dysconnectivity and discovered using a machine learning model in patients suffering from dementia. The model recognized the same brain signature in MCI individuals, 90% of which progressed to dementia within three years. This result is a marked improvement on the state-of-the-art in prognostic precision, while the brain signature still identified 47% of all MCI progressors. We thus discovered a sizable MCI subpopulation which represents an excellent recruitment target for clinical trials at the prodromal stage of Alzheimer's disease.
arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.1712.08058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.48550/arxiv.1712.08058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2018Frontiers Media SA CIHR, NIH | Alzheimers Disease Neuroi...CIHR ,NIH| Alzheimers Disease Neuroimaging InitiativeXiao Luo; Kaicheng Li; Qingze Zeng; Peiyu Huang; Yeerfan Jiaerken; Tiantian Qiu; Xiaojun Xu; Jiong Zhou; Jingjing Xu; Minming Zhang;Background: Amnestic mild cognitive impairment (aMCI) is a heterogeneous condition. Based on clinical symptoms, aMCI could be categorized into single-domain aMCI (SD-aMCI, only memory deficit) and multi-domain aMCI (MD-aMCI, one or more cognitive domain deficit). As core intrinsic functional architecture, inter-hemispheric connectivity maintains many cognitive abilities. However, few studies investigated whether SD-aMCI and MD-aMCI have different inter-hemispheric connectivity pattern.Methods: We evaluated inter-hemispheric connection pattern using fluorine-18 positron emission tomography – fluorodeoxyglucose (18F PET-FDG), resting-state functional MRI and structural T1 in 49 controls, 32 SD-aMCI, and 32 MD-aMCI patients. Specifically, we analyzed the 18F PET-FDG (intensity normalized by cerebellar vermis) in a voxel-wise manner. Then, we estimated inter-hemispheric functional and structural connectivity by calculating the voxel-mirrored homotopic connectivity (VMHC) and corpus callosum (CC) subregions volume. Further, we correlated inter-hemispheric indices with the behavioral score and pathological biomarkers.Results: We found that MD-aMCI exhibited more several inter-hemispheric connectivity damages than SD-aMCI. Specifically, MD-aMCI displayed hypometabolism in the bilateral middle temporal gyrus (MTG), inferior parietal lobe, and left precuneus (PCu) (p < 0.001, corrected). Correspondingly, MD-aMCI showed decreased VMHC in MTG, PCu, calcarine gyrus, and postcentral gyrus, as well as smaller mid-posterior CC than the SD-aMCI and controls (p < 0.05, corrected). Contrary to MD-aMCI, there were no neuroimaging indices with significant differences between SD-aMCI and controls, except reduced hypometabolism in bilateral MTG. Within aMCI patients, hypometabolism and reduced inter-hemispheric connectivity correlated with worse executive ability. Moreover, hypometabolism indices correlated to increased amyloid deposition.Conclusion: In conclusion, patients with MD-aMCI exhibited the more severe deficit in inter-hemispheric communication than SD-aMCI. This long-range connectivity deficit may contribute to cognitive profiles and potentially serve as a biomarker to estimate disease progression of aMCI patients.
Frontiers in Aging N... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnagi.2018.00161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Aging N... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnagi.2018.00161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 EnglishOxford University Press CIHR, NIH | Alzheimers Disease Neuroi...CIHR ,NIH| Alzheimers Disease Neuroimaging InitiativePereira, Joana B; Strandberg, Tor Olof; Palmqvist, Sebastian; Volpe, Giovanni; van Westen, Danielle; Westman, Eric; Hansson, Oskar;pmc: PMC6454565
pmid: 29136123
Abstract There is increasing evidence showing that the accumulation of the amyloid-β (Aβ) peptide into extracellular plaques is a central event in Alzheimer's disease (AD). These abnormalities can be detected as lowered levels of Aβ42 in the cerebrospinal fluid (CSF) and are followed by increased amyloid burden on positron emission tomography (PET) several years before the onset of dementia. The aim of this study was to assess amyloid network topology in nondemented individuals with early stage Aβ accumulation, defined as abnormal CSF Aβ42 levels and normal Florbetapir PET (CSF+/PET−), and more advanced Aβ accumulation, defined as both abnormal CSF Aβ42 and Florbetapir PET (CSF+/PET+). The amyloid networks were built using correlations in the mean 18F-florbetapir PET values between 72 brain regions and analyzed using graph theory analyses. Our findings showed an association between early amyloid stages and increased covariance as well as shorter paths between several brain areas that overlapped with the default-mode network (DMN). Moreover, we found that individuals with more advanced amyloid accumulation showed more widespread changes in brain regions both within and outside the DMN. These findings suggest that amyloid network topology could potentially be used to assess disease progression in the predementia stages of AD.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC6454565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=PMC6454565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017 United StatesElsevier BV CIHR, NIH | CORE-- CLINICAL, NIH | Alzheimers Disease Neuroi... +1 projectsCIHR ,NIH| CORE-- CLINICAL ,NIH| Alzheimers Disease Neuroimaging Initiative ,NIH| ENIGMA Center for Worldwide Medicine, Imaging & GenomicsJulia A. Scott; Duygu Tosun; Meredith N. Braskie; Pauline Maillard; Paul M. Thompson; Michael W. Weiner; Charles DeCarli; Owen Carmichael;The purpose of this study was to determine whether white matter microstructure measured by diffusion magnetic resonance imaging (dMRI) provides independent information about baseline level or change in executive function (EF) or memory (MEM) in older adults with and without cognitive impairment. Longitudinal data was acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study from phases GO and 2 (2009–2015). ADNI participants included were diagnosed as cognitively normal (n = 46), early mild cognitive impairment (MCI) (n = 48), late MCI (n = 29), and dementia (n = 39) at baseline. We modeled the association between dMRI-based global white matter mean diffusivity (MD) and baseline level and change in EF and MEM composite scores, in models controlling for baseline bilateral hippocampal volume, regional cerebral FDG PET metabolism and global cerebral AV45 PET uptake. EF and MEM composite scores were measured at baseline, 6, 12, 24 and 36 months. In the baseline late MCI and dementia groups, greater global MD was associated with lesser baseline EF, but not EF change nor MEM baseline or change. As expected, lesser hippocampal volume and lesser FDG PET metabolism was associated with greater rates of EF and MEM decline. In ADNI-GO/2 participants, white matter integrity provided independent information about current executive function, but was not sensitive to future cognitive change. Since individuals experiencing executive function declines progress to dementia more rapidly than those with only memory impairment, better biomarkers of future executive function decline are needed. Highlights • In the ADNI cohort, MRI and PET predictors of baseline and change in executive function were tested. • Global mean diffusivity was associated with baseline, but not change in, executive function. • Diffusion MRI provides independent information on current executive function in older adults.
Europe PubMed Centra... arrow_drop_down NeuroImage: ClinicalArticle . 2017eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nicl.2017.01.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Europe PubMed Centra... arrow_drop_down NeuroImage: ClinicalArticle . 2017eScholarship - University of CaliforniaArticle . 2017Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nicl.2017.01.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Frontiers Media SA NIH | Deep Learning Enabled End..., CIHR, NIH | Center for Clinical and T... +1 projectsNIH| Deep Learning Enabled Endovascular Stroke Therapy Screening in Community Hospitals ,CIHR ,NIH| Center for Clinical and Translational Sciences (CCTS) ,NIH| Alzheimers Disease Neuroimaging InitiativeDanilo Pena; Jessika Suescun; Mya Schiess; Timothy M. Ellmore; Luca Giancardo; the Alzheimer’s Disease Neuroimaging Initiative;Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. It is one of the leading sources of morbidity and mortality in the aging population AD cardinal symptoms include memory and executive function impairment that profoundly alters a patient’s ability to perform activities of daily living. People with mild cognitive impairment (MCI) exhibit many of the early clinical symptoms of patients with AD and have a high chance of converting to AD in their lifetime. Diagnostic criteria rely on clinical assessment and brain magnetic resonance imaging (MRI). Many groups are working to help automate this process to improve the clinical workflow. Current computational approaches are focused on predicting whether or not a subject with MCI will convert to AD in the future. To our knowledge, limited attention has been given to the development of automated computer-assisted diagnosis (CAD) systems able to provide an AD conversion diagnosis in MCI patient cohorts followed longitudinally. This is important as these CAD systems could be used by primary care providers to monitor patients with MCI. The method outlined in this paper addresses this gap and presents a computationally efficient pre-processing and prediction pipeline, and is designed for recognizing patterns associated with AD conversion. We propose a new approach that leverages longitudinal data that can be easily acquired in a clinical setting (e.g., T1-weighted magnetic resonance images, cognitive tests, and demographic information) to identify the AD conversion point in MCI subjects with AUC = 84.7. In contrast, cognitive tests and demographics alone achieved AUC = 80.6, a statistically significant difference (n = 669, p < 0.05). We designed a convolutional neural network that is computationally efficient and requires only linear registration between imaging time points. The model architecture combines Attention and Inception architectures while utilizing both cross-sectional and longitudinal imaging and clinical information. Additionally, the top brain regions and clinical features that drove the model’s decision were investigated. These included the thalamus, caudate, planum temporale, and the Rey Auditory Verbal Learning Test. We believe our method could be easily translated into the healthcare setting as an objective AD diagnostic tool for patients with MCI.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.744190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fnins.2021.744190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2013 Finland EnglishVTT Technical Research Centre of Finland CIHR, NIH | UC Davis Alzheimer's Core..., NIH | "MR Morphometrics and Cog... +2 projectsCIHR ,NIH| UC Davis Alzheimer's Core Center ,NIH| "MR Morphometrics and Cognitive Decline Rate in Large-Scale Aging Studies" ,NIH| Alzheimers Disease Neuroimaging Initiative ,EC| PREDICTADDue to scientific and technological advancements, investigations in modern medicine are producing more measurement data than ever before. Since a large amount of information exists, and it is also being produced at ever-increasing rates, no single person can digest all current knowledge of diseases. Data collected from large patient cohorts may contain valuable knowledge of diseases, which could be useful to clinicians when making diagnoses or choosing treatments. Making use of the large volumes of data in clinical decision-making requires ancillary help from information technologies, but such systems have not yet become widely available. This thesis addresses the challenge by proposing a computer-based decision support method that is suited to clinical use. This thesis presents the Disease State Index (DSI), a supervised machine learning method intended for the analysis of patient data. The DSI comprehensively compares patient data with previously diagnosed cases with or without a disease. Based on this comparison, the method provides an estimate of the state of disease progression in the patient. Interpreting the DSI is made possible by its visual counterpart, the Disease State Fingerprint (DSF), which allows domain experts to gain a comprehensive view of patient data and the state of the disease at a quick glance. In the design and development of these methods, both performance and applicability in clinical use were taken into account equally. Alzheimer's disease (AD) is a slowly progressing neurodegenerative disease and one of the largest social and economic burdens in the world today, and it will continue to be so in the future. Studies with large patient cohorts have significantly improved our knowledge of AD during the last decade. This information should be made extensively available at memory clinics to maximize the benefits for diagnostics and treatment of the disease. The DSI and DSF methods proposed in this thesis were studied in the early diagnosis of AD and as a measure of disease progression in six original publications. The methods themselves and their implementation within a clinical decision support system, the PredictAD tool, were quantitatively evaluated with regard to their performance and potential benefits in clinical use. The results show that the methods and clinical decision support tool based on these methods can be used to follow disease progression objectively and provide earlier diagnoses of AD. These, in turn, could improve treatment efficacy due to earlier interventions and make drug trials more efficient by allowing better patient selection.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___01229::2c7383056547a1d3614c45afdda57fea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dris___01229::2c7383056547a1d3614c45afdda57fea&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2019Cold Spring Harbor Laboratory CIHR, NIH | Alzheimers Disease Neuroi...CIHR ,NIH| Alzheimers Disease Neuroimaging InitiativeMatthieu Dumont; Maggie Roy; Maggie Roy; Pierre-Marc Jodoin; Pierre-Marc Jodoin; Felix C. Morency; Jean-Christophe Houde; Jean-Christophe Houde; Zhiyong Xie; Cici Bauer; Tarek A. Samad; Koene R. A. Van Dijk; James A. Goodman; Maxime Descoteaux; Maxime Descoteaux; Alzheimer's Disease Neuroimaging Initiative;AbstractRecent evidence show that neuroinflammation plays a role in many neurological diseases including mild cognitive impairment (MCI) and Alzheimer’s disease (AD), and that free water (FW) modeling from clinically acquired diffusion MRI (DTI-like acquisitions) can be sensitive to this phenomenon. This FW index measures the fraction of the diffusion signal explained by isotropically unconstrained water, as estimated from a bi-tensor model. In this study, we developed a simple FW processing pipeline that uses a safe white matter (WM) mask without gray matter (GM)/CSF partial volume contamination (WMsafe) near ventricles and sulci. We investigated if FW inside the WMsafe mask, including and excluding areas of white matter damage such as white matter hyperintensities (WMHs) as shown on T2 FLAIR, computed across the whole white matter could be indicative of diagnostic grouping along the AD continuum.After careful quality control, 81 cognitively normal controls (NC), 103 subjects with MCI and 42 with AD were selected from the ADNIGO and ADNI2 databases. We show that MCI and AD have significantly higher FW measures even after removing all partial volume contamination. We also show, for the first time, that when WMHs are removed from the masks, the significant results are maintained, which demonstrates that the FW measures are not just a byproduct of WMHs. Our new and simple FW measures can be used to increase our understanding of the role of inflammation-associated edema in AD and may aid in the differentiation of healthy subjects from MCI and AD patients.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/537092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 1% influence Average impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/537092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article 2015Public Library of Science (PLoS) NIH | UC Davis Alzheimer's Core..., NIH | "MR Morphometrics and Cog..., CIHR +1 projectsNIH| UC Davis Alzheimer's Core Center ,NIH| "MR Morphometrics and Cognitive Decline Rate in Large-Scale Aging Studies" ,CIHR ,NIH| Alzheimers Disease Neuroimaging InitiativeSuping Cai; Liyu Huang; Jia Zou; Longlong Jing; Buzhong Zhai; Gongjun Ji; Karen M von Deneen; Junchan Ren; Aifeng Ren; Alzheimer’s Disease Neuroimaging Initiative;We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer's disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0115573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0115573&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2012 Spain, France, Denmark, France, NetherlandsElsevier BV CIHR, NIH | Alzheimers Disease Neuroi..., NIH | UC Davis Alzheimer's Core... +1 projectsCIHR ,NIH| Alzheimers Disease Neuroimaging Initiative ,NIH| UC Davis Alzheimer's Core Center ,NIH| "MR Morphometrics and Cognitive Decline Rate in Large-Scale Aging Studies"Vladimir Fonov; D. Louis Collins; Brandon Whitcher; Hakon Grydeland; Pierrick Coupe; Yongxia (Sharon) Zhou; Lasse Riis ؘstergaard; Pierre Payoux; Simon Eskildsen; Jeffrey Looi; Eric Jouvent; Jens Pruessner; Harald Hampel; Christian Gaser; Freimut Juengling; Herve Lemaitre;Brain extraction is an important step in the analysis of brain images. The variability in brain morphology and the difference in intensity characteristics due to imaging sequences make the development of a general purpose brain extraction algorithm challenging. To address this issue, we propose a new robust method (BEaST) dedicated to produce consistent and accurate brain extraction. This method is based on nonlocal segmentation embedded in a multi-resolution framework. A library of 80 priors is semi-automatically constructed from the NIH-sponsored MRI study of normal brain development, the International Consortium for Brain Mapping, and the Alzheimer's Disease Neuroimaging Initiative databases. In testing, a mean Dice similarity coefficient of 0.9834 ± 0.0053 was obtained when performing leave-one-out cross validation selecting only 20 priors from the library. Validation using the online Segmentation Validation Engine resulted in a top ranking position with a mean Dice coefficient of 0.9781 ± 0.0047. Robustness of BEaST is demonstrated on all baseline ADNI data, resulting in a very low failure rate. The segmentation accuracy of the method is better than two widely used publicly available methods and recent state-of-the-art hybrid approaches. BEaST provides results comparable to a recent label fusion approach, while being 40 times faster and requiring a much smaller library of priors. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., as well as non-profit partners the Alzheimer's Association and Alzheimer's Drug Discovery Foundation, with participation from the U.S. Food and Drug Administration. Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of California, Los Angeles. This research was also supported by NIH grants P30AG010129, K01 AG030514, and the Dana Foundation.
HAL-Inserm; Mémoires... arrow_drop_down HAL-Inserm; Mémoires en Sciences de l'Information et de la Communication; Hal-DiderotOther literature type . Article . 2012VBN; Aalborg University Research PortalArticle . 2012add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neuroimage.2011.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu373 citations 373 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 189visibility views 189 download downloads 1,341 Powered bymore_vert HAL-Inserm; Mémoires... arrow_drop_down HAL-Inserm; Mémoires en Sciences de l'Information et de la Communication; Hal-DiderotOther literature type . Article . 2012