search
Include:
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products, page 1 of 1

  • Canada
  • Open Access
  • Australian Research Council (ARC)
  • AU
  • EASY
  • Mendeley Data

Relevance
arrow_drop_down
  • Open Access
    Authors: 
    Wolff, Jonci N.; Pichaud, Nicolas; Camus, Maria F.; Côté, Geneviève; Blier, Pierre U.; Dowling, Damian K.;
    Project: NSERC , ARC | Sexual conflict in the mi... (DP1092897)

    The ancient acquisition of the mitochondrion into the ancestor of modern-day eukaryotes is thought to have been pivotal in facilitating the evolution of complex life. Mitochondria retain their own diminutive genome, with mitochondrial genes encoding core subunits involved in oxidative phosphorylation. Traditionally, it was assumed that there was little scope for genetic variation to accumulate and be maintained within the mitochondrial genome. However, in the past decade, mitochondrial genetic variation has been routinely tied to the expression of life-history traits such as fertility, development and longevity. To examine whether these broad-scale effects on life-history trait expression might ultimately find their root in mitochondrially mediated effects on core bioenergetic function, we measured the effects of genetic variation across twelve different mitochondrial haplotypes on respiratory capacity and mitochondrial quantity in the fruit fly, Drosophila melanogaster. We used strains of flies that differed only in their mitochondrial haplotype, and tested each sex separately at two different adult ages. Mitochondrial haplotypes affected both respiratory capacity and mitochondrial quantity. However, these effects were highly context-dependent, with the genetic effects contingent on both the sex and the age of the flies. These sex- and age-specific genetic effects are likely to resonate across the entire organismal life-history, providing insights into how mitochondrial genetic variation may contribute to sex-specific trajectories of life-history evolution. Alstonville_DryadBarcelona_DryadBrownsville_DryadDahomey_DryadHawaii_DryadIsrael_DryadJapan_DryadMadang_DryadMysore_DryadOregon_DryadPuerto Montt_DryadSweden_Dryad

  • Open Access
    Authors: 
    Leliaert, Frederik;
    Project: NSERC , ARC | Evolutionary dynamics of ... (FT110100585), ARC | Discovery Projects - Gran... (DP150100705)

    Alignments, trees and Biogeobears analyses related to the study "Patterns and drivers of species diversity in the Indo-Pacific red seaweed Portieria". Biogeographical processes underlying Indo-Pacific biodiversity patterns have been relatively well studied in marine shallow water invertebrates and fishes, but have been explored much less extensively in seaweeds, despite these organisms often displaying markedly different patterns. Using the marine red alga Portieria as a model, we aim to gain understanding of the evolutionary processes generating seaweed biogeographical patterns. Our results will be evaluated and compared with known patterns and processes in animals. Species diversity estimates were inferred using DNA-based species delimitation methods. Historical biogeographical patterns were inferred based on a six-gene time-calibrated phylogeny, distribution data of 802 specimens, and probabilistic modelling of geographic range evolution. The importance of geographic isolation for speciation was further evaluated by population genetic analyses at the intraspecific level. We delimited 92 candidate species, most with restricted distributions, suggesting low dispersal capacity. Highest species diversity was found in the Indo-Malay Archipelago (IMA). Our phylogeny indicates that Portieria originated during the late Cretaceous in the area that is now the Central Indo-Pacific. The biogeographical history of Portieria includes repeated dispersal events to peripheral regions, followed by long-term persistence and diversification of lineages within those regions, and limited dispersal back to the IMA. Our results suggest that the long geological history of the IMA played an important role in shaping Portieria diversity. High species richness in the IMA resulted from a combination of speciation at small spatial scales, possibly as a result of increased regional habitat diversity from the Eocene onwards, and species accumulation via dispersal and/or island integration through tectonic movement. Our results are consistent with the biodiversity feedback model, in which biodiversity hotspots act as both ‘centres of origin’ and ‘centres of accumulation’, and corroborate previous findings for invertebrates and fish that there is no single unifying model explaining the biological diversity within the IMA.

  • Open Access
    Authors: 
    Teste, François P.; Laliberté, Etienne;
    Publisher: Data Archiving and Networked Services (DANS)
    Project: NSERC , ARC | The role of plant-soil fe... (DP130100016)

    1. The vast majority of terrestrial plants form root symbioses with arbuscular mycorrhizal (AM) fungi to enhance nutrient (particularly phosphorus, P) acquisition, but some plant species also form dual symbioses involving ectomycorrhizal (ECM) fungi, with a subset of those also forming triple symbioses also involving dinitrogen (N2)-fixing bacteria. Whether these plants show plasticity in root symbioses to optimise nutrient acquisition depending on the type and strength of soil nutrient limitation (e.g., N vs. P) has been suggested, yet empirical evidence remains limited. Alternatively, the degree of investment or ‘preference’ in particular root symbioses might simply reflect differences in inoculum potential among soils of contrasting nutrient availability, reflecting adaptations of root symbionts to different edaphic conditions. 2. Here, we grew two co-occurring plant species forming triple (AM / ECM / N2-fixing; Acacia rostellifera) or dual (AM / ECM; Melaleuca systena) symbioses in soils of increasing age and contrasting nutrient availability from an Australian long-term soil chronosequence to disentangle the relative importance of abiotic factors (e.g., soil nutrient availability and stoichiometry) and biotic factors (e.g., soil inoculum potential) in determining root colonisation patterns and functional outcomes of these multiple root symbioses. 3. For both plant species, we found clear hump-shaped plant growth patterns along the pedogenesis-driven gradient in soil nutrient availability, with peak growth in intermediate-aged soils, while high levels of mycorrhizal colonisation by the ‘preferred’ root symbionts was maintained. We found large increases (540%) in foliar manganese concentrations with increasing soil age and declining P availability, suggesting that plants are also relying on the release of carboxylates to help acquire P in the most impoverished soils. Finally, we found that soil abiotic properties, such as strong differences in soil nutrient availabilities, are generally more important than soil inoculum potential in explaining these shifts in our plant and root responses. 4. Synthesis. Our study suggests that plants capable of forming multiple root symbioses show plasticity in their nutrient-acquisition strategies following shifts in soil nutrients during long-term ecosystem development, yet maintain a preference for certain root symbionts despite changes in soil microbial inoculum. PlantGrowthPlant species growth data incluiding initial predicted biomassgrowth.csvfoliarNutrients-Using_Average_for_values_below_detection_limitfoliarNutrients-Using_Average_for_values_below_detection_limitfoliarNutrients-Using_detection_limit_itself_for_values_below_detection_limitfoliarNutrients-Using_detection_limit_itself_for_values_below_detection_limitfoliar15NPlant species foliar 15NmycorrhizasArbuscular and ectomycorrhizal fungal colonization data for both plant specieshyphalLengthExtraradical fungal hyphal length counts for soil samples taken from pots of both plant species

  • Open Access
    Authors: 
    Careau, Vincent; Wilson, Robbie S.;
    Project: NSERC , ARC | ARC Future Fellowships - ... (FT150100492)

    The mechanistic foundations of performance trade-offs are clear: because body size and shape constrains movement, and muscles vary in strength and fibre type, certain physical traits should act in opposition with others (e.g. sprint versus endurance). Yet performance trade-offs are rarely detected, and traits are often positively correlated. A potential resolution to this conundrum is that within-individual performance trade-offs can be masked by among-individual variation in ‘quality’. Although there is a current debate on how to unambiguously define and account for quality, no previous studies have partitioned trait correlations at the within- and among-individual levels. Here, we evaluate performance trade-offs among and within 1369 elite athletes that performed in a total of 6418 combined-events competitions (decathlon and heptathlon). Controlling for age, experience and wind conditions, we detected strong trade-offs between groups of functionally similar events (throwing versus jumping versus running) occurring at the among-individual level. We further modelled individual (co)variation in age-related plasticity of performance and found previously unseen trade-offs in throwing versus running performance that manifest through ageing. Our results verify that human performance is limited by fundamental genetic, environmental and ageing constraints that preclude the simultaneous improvement of performance in multiple dimensions. Identifying these constraints is fundamental to understanding performance trade-offs and predicting the ageing of motor function. DECATHLON_DATA_ALL_anonymousHEPTATHLON_DATA_ALL_anonymousCareau&Wilson_codes_with_ALL_DATA

search
Include:
The following results are related to Canada. Are you interested to view more results? Visit OpenAIRE - Explore.
4 Research products, page 1 of 1
  • Open Access
    Authors: 
    Wolff, Jonci N.; Pichaud, Nicolas; Camus, Maria F.; Côté, Geneviève; Blier, Pierre U.; Dowling, Damian K.;
    Project: NSERC , ARC | Sexual conflict in the mi... (DP1092897)

    The ancient acquisition of the mitochondrion into the ancestor of modern-day eukaryotes is thought to have been pivotal in facilitating the evolution of complex life. Mitochondria retain their own diminutive genome, with mitochondrial genes encoding core subunits involved in oxidative phosphorylation. Traditionally, it was assumed that there was little scope for genetic variation to accumulate and be maintained within the mitochondrial genome. However, in the past decade, mitochondrial genetic variation has been routinely tied to the expression of life-history traits such as fertility, development and longevity. To examine whether these broad-scale effects on life-history trait expression might ultimately find their root in mitochondrially mediated effects on core bioenergetic function, we measured the effects of genetic variation across twelve different mitochondrial haplotypes on respiratory capacity and mitochondrial quantity in the fruit fly, Drosophila melanogaster. We used strains of flies that differed only in their mitochondrial haplotype, and tested each sex separately at two different adult ages. Mitochondrial haplotypes affected both respiratory capacity and mitochondrial quantity. However, these effects were highly context-dependent, with the genetic effects contingent on both the sex and the age of the flies. These sex- and age-specific genetic effects are likely to resonate across the entire organismal life-history, providing insights into how mitochondrial genetic variation may contribute to sex-specific trajectories of life-history evolution. Alstonville_DryadBarcelona_DryadBrownsville_DryadDahomey_DryadHawaii_DryadIsrael_DryadJapan_DryadMadang_DryadMysore_DryadOregon_DryadPuerto Montt_DryadSweden_Dryad

  • Open Access
    Authors: 
    Leliaert, Frederik;
    Project: NSERC , ARC | Evolutionary dynamics of ... (FT110100585), ARC | Discovery Projects - Gran... (DP150100705)

    Alignments, trees and Biogeobears analyses related to the study "Patterns and drivers of species diversity in the Indo-Pacific red seaweed Portieria". Biogeographical processes underlying Indo-Pacific biodiversity patterns have been relatively well studied in marine shallow water invertebrates and fishes, but have been explored much less extensively in seaweeds, despite these organisms often displaying markedly different patterns. Using the marine red alga Portieria as a model, we aim to gain understanding of the evolutionary processes generating seaweed biogeographical patterns. Our results will be evaluated and compared with known patterns and processes in animals. Species diversity estimates were inferred using DNA-based species delimitation methods. Historical biogeographical patterns were inferred based on a six-gene time-calibrated phylogeny, distribution data of 802 specimens, and probabilistic modelling of geographic range evolution. The importance of geographic isolation for speciation was further evaluated by population genetic analyses at the intraspecific level. We delimited 92 candidate species, most with restricted distributions, suggesting low dispersal capacity. Highest species diversity was found in the Indo-Malay Archipelago (IMA). Our phylogeny indicates that Portieria originated during the late Cretaceous in the area that is now the Central Indo-Pacific. The biogeographical history of Portieria includes repeated dispersal events to peripheral regions, followed by long-term persistence and diversification of lineages within those regions, and limited dispersal back to the IMA. Our results suggest that the long geological history of the IMA played an important role in shaping Portieria diversity. High species richness in the IMA resulted from a combination of speciation at small spatial scales, possibly as a result of increased regional habitat diversity from the Eocene onwards, and species accumulation via dispersal and/or island integration through tectonic movement. Our results are consistent with the biodiversity feedback model, in which biodiversity hotspots act as both ‘centres of origin’ and ‘centres of accumulation’, and corroborate previous findings for invertebrates and fish that there is no single unifying model explaining the biological diversity within the IMA.

  • Open Access
    Authors: 
    Teste, François P.; Laliberté, Etienne;
    Publisher: Data Archiving and Networked Services (DANS)
    Project: NSERC , ARC | The role of plant-soil fe... (DP130100016)

    1. The vast majority of terrestrial plants form root symbioses with arbuscular mycorrhizal (AM) fungi to enhance nutrient (particularly phosphorus, P) acquisition, but some plant species also form dual symbioses involving ectomycorrhizal (ECM) fungi, with a subset of those also forming triple symbioses also involving dinitrogen (N2)-fixing bacteria. Whether these plants show plasticity in root symbioses to optimise nutrient acquisition depending on the type and strength of soil nutrient limitation (e.g., N vs. P) has been suggested, yet empirical evidence remains limited. Alternatively, the degree of investment or ‘preference’ in particular root symbioses might simply reflect differences in inoculum potential among soils of contrasting nutrient availability, reflecting adaptations of root symbionts to different edaphic conditions. 2. Here, we grew two co-occurring plant species forming triple (AM / ECM / N2-fixing; Acacia rostellifera) or dual (AM / ECM; Melaleuca systena) symbioses in soils of increasing age and contrasting nutrient availability from an Australian long-term soil chronosequence to disentangle the relative importance of abiotic factors (e.g., soil nutrient availability and stoichiometry) and biotic factors (e.g., soil inoculum potential) in determining root colonisation patterns and functional outcomes of these multiple root symbioses. 3. For both plant species, we found clear hump-shaped plant growth patterns along the pedogenesis-driven gradient in soil nutrient availability, with peak growth in intermediate-aged soils, while high levels of mycorrhizal colonisation by the ‘preferred’ root symbionts was maintained. We found large increases (540%) in foliar manganese concentrations with increasing soil age and declining P availability, suggesting that plants are also relying on the release of carboxylates to help acquire P in the most impoverished soils. Finally, we found that soil abiotic properties, such as strong differences in soil nutrient availabilities, are generally more important than soil inoculum potential in explaining these shifts in our plant and root responses. 4. Synthesis. Our study suggests that plants capable of forming multiple root symbioses show plasticity in their nutrient-acquisition strategies following shifts in soil nutrients during long-term ecosystem development, yet maintain a preference for certain root symbionts despite changes in soil microbial inoculum. PlantGrowthPlant species growth data incluiding initial predicted biomassgrowth.csvfoliarNutrients-Using_Average_for_values_below_detection_limitfoliarNutrients-Using_Average_for_values_below_detection_limitfoliarNutrients-Using_detection_limit_itself_for_values_below_detection_limitfoliarNutrients-Using_detection_limit_itself_for_values_below_detection_limitfoliar15NPlant species foliar 15NmycorrhizasArbuscular and ectomycorrhizal fungal colonization data for both plant specieshyphalLengthExtraradical fungal hyphal length counts for soil samples taken from pots of both plant species

  • Open Access
    Authors: 
    Careau, Vincent; Wilson, Robbie S.;
    Project: NSERC , ARC | ARC Future Fellowships - ... (FT150100492)

    The mechanistic foundations of performance trade-offs are clear: because body size and shape constrains movement, and muscles vary in strength and fibre type, certain physical traits should act in opposition with others (e.g. sprint versus endurance). Yet performance trade-offs are rarely detected, and traits are often positively correlated. A potential resolution to this conundrum is that within-individual performance trade-offs can be masked by among-individual variation in ‘quality’. Although there is a current debate on how to unambiguously define and account for quality, no previous studies have partitioned trait correlations at the within- and among-individual levels. Here, we evaluate performance trade-offs among and within 1369 elite athletes that performed in a total of 6418 combined-events competitions (decathlon and heptathlon). Controlling for age, experience and wind conditions, we detected strong trade-offs between groups of functionally similar events (throwing versus jumping versus running) occurring at the among-individual level. We further modelled individual (co)variation in age-related plasticity of performance and found previously unseen trade-offs in throwing versus running performance that manifest through ageing. Our results verify that human performance is limited by fundamental genetic, environmental and ageing constraints that preclude the simultaneous improvement of performance in multiple dimensions. Identifying these constraints is fundamental to understanding performance trade-offs and predicting the ageing of motor function. DECATHLON_DATA_ALL_anonymousHEPTATHLON_DATA_ALL_anonymousCareau&Wilson_codes_with_ALL_DATA