Filters
Clear AllLoading
- FCT| SFRH/BPD/79801/2011 ,NSERC ,EC| CORALFISH ,EC| HERMIONEMorato, T.; Kvile, K. Ø.; Taranto, G. H.; Tempera, F.; Narayanaswamy, B. E.; Hebbeln, D.; Menezes, G. M.; Wienberg, C.; Santos, R. S.; Pitcher, T. J.;
This work aims at characterising the seamount physiography and biology in the OSPAR Convention limits (north-east Atlantic Ocean) and Mediterranean Sea. We first inferred potential abundance, location and morphological characteristics of seamounts, and secondly, summarized the existing biological, geological and oceanographic in situ research, identifying examples of well-studied seamounts. Our study showed that the seamount population in the OSPAR area (north-east Atlantic) and in the Mediterranean Sea is large with around 557 and 101 seamount-like features, respectively. Similarly, seamounts occupy large areas of about 616 000 km2 in the OSPAR region and of about 89 500 km2 in the Mediterranean Sea. The presence of seamounts in the north-east Atlantic has been known since the late 19th century, but overall knowledge regarding seamount ecology and geology is still relatively poor. Only 37 seamounts in the OSPAR area (3.5% of all seamounts in the region), 22 in the Mediterranean Sea (9.2% of all seamounts in the region) and 25 in the north-east Atlantic south of the OSPAR area have in situ information. Seamounts mapped in both areas are in general very heterogeneous, showing diverse geophysical characteristics. These differences will likely affect the biological diversity and production of resident and associated organisms.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::3bc80fea6971670a1fdc7e9907eeba64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 0 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::3bc80fea6971670a1fdc7e9907eeba64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu apps Other research productkeyboard_double_arrow_right Collection 2018 EnglishPANGAEA EC | ERA-PLANET, NSERCEC| ERA-PLANET ,NSERCAuthors: Beamish, Alison Leslie;Beamish, Alison Leslie;Ground-based spectroscopy measurements acquired systematically within the Toolik Vegetation Grid in the 2016 growing season. All data were collected in a subset of 1 x 1 m long-term monitoring plots representing three distinct vegetation communities three times representing early, peak and late season. Spectral data were acquired using a GER 1500 field spectrometer (350-1050 nm; 512 bands, spectral resolution 3 nm, spectral sampling 1.5 nm, and 8! field of view). Spectra were collected under clear weather conditions at the highest solar zenith angle between 10:00 and 14:00 local time. Data were collected at nadir approximately 1 m off the ground resulting in a Ground Instantaneous Field of View (GIFOV) of approximately 15 cm in diameter. Nine point measurements of upwelling radiance (Lup) were collected in each plot and averaged to characterize the spectral variability and to reduce noise. Downwelling radiance (Ldown) was measured as the reflectance from a white Spectralon© plate. Surface reflectance (R) was processed as Lup/Ldown x 100 (0-100%). Reflectance spectra were preprocessed with a Savitzky-Golay smoothing filter (n = 11) and subset to 400-985 nm to remove sensor noise at the edges of the radiometer detector. Digital camera data were acquired using a consumer-grade camera (Panasonic DM3 LMX, Japan) approximately 1 m off the ground with a white frame for registration of off nadir images. For detailed definitions of the RGB indices see metadata.docx. Leaves and stems of the dominant vascular species in a subset of the sampled plots were collected at early, peak, and late season for chlorophyll and carotenoid analysis.Samples were placed in porous tea bags and preserved in a silica gel desiccant in an opaque container for up to 3 months until pigment extraction (Esteban et al. 2009, doi:10.1007/s11120-009-9468-5). Each sample was homogenized by grinding with a mortar and pestle. Approximately 1.00 mg (+/- 0.05 mg) of homogenized sample was placed into a vial with 2 ml of dimethylformamide (DMF). Vials were then wrapped in aluminum foil to eliminate any degradation of pigments due to UV light and stored in a fridge (4C) for 24 hrs. Samples were measured into a cuvette prior to spectrophotometric analysis. Bulk pigments concentrations were then estimated using a spectrophotometer measuring absorption at 646.8, 663.8 and 480 nm (Porra et al. 1989, doi:10.1016/S0005-2728(89)80347-0) . Absorbance (A) values at specific wavelengths were transformed into µg/mg concentrations of chlorophyll a, Chla, chlorophyll b, Chlb, total chlorophyll, Chl, carotenoids, Car (for equations see metadata.docx). Pigment concentration was calculated as the average concentration of the dominant species in each plot. mean_"pigment" represents the mean of all biomass from each vegetation community and sd_"pigment" represents the standard deviation of each vegetation community.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::259c64228a9b077995053533a74c1fc0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::259c64228a9b077995053533a74c1fc0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
- FCT| SFRH/BPD/79801/2011 ,NSERC ,EC| CORALFISH ,EC| HERMIONEMorato, T.; Kvile, K. Ø.; Taranto, G. H.; Tempera, F.; Narayanaswamy, B. E.; Hebbeln, D.; Menezes, G. M.; Wienberg, C.; Santos, R. S.; Pitcher, T. J.;
This work aims at characterising the seamount physiography and biology in the OSPAR Convention limits (north-east Atlantic Ocean) and Mediterranean Sea. We first inferred potential abundance, location and morphological characteristics of seamounts, and secondly, summarized the existing biological, geological and oceanographic in situ research, identifying examples of well-studied seamounts. Our study showed that the seamount population in the OSPAR area (north-east Atlantic) and in the Mediterranean Sea is large with around 557 and 101 seamount-like features, respectively. Similarly, seamounts occupy large areas of about 616 000 km2 in the OSPAR region and of about 89 500 km2 in the Mediterranean Sea. The presence of seamounts in the north-east Atlantic has been known since the late 19th century, but overall knowledge regarding seamount ecology and geology is still relatively poor. Only 37 seamounts in the OSPAR area (3.5% of all seamounts in the region), 22 in the Mediterranean Sea (9.2% of all seamounts in the region) and 25 in the north-east Atlantic south of the OSPAR area have in situ information. Seamounts mapped in both areas are in general very heterogeneous, showing diverse geophysical characteristics. These differences will likely affect the biological diversity and production of resident and associated organisms.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::3bc80fea6971670a1fdc7e9907eeba64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 0 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=copernicuspu::3bc80fea6971670a1fdc7e9907eeba64&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu apps Other research productkeyboard_double_arrow_right Collection 2018 EnglishPANGAEA EC | ERA-PLANET, NSERCEC| ERA-PLANET ,NSERCAuthors: Beamish, Alison Leslie;Beamish, Alison Leslie;Ground-based spectroscopy measurements acquired systematically within the Toolik Vegetation Grid in the 2016 growing season. All data were collected in a subset of 1 x 1 m long-term monitoring plots representing three distinct vegetation communities three times representing early, peak and late season. Spectral data were acquired using a GER 1500 field spectrometer (350-1050 nm; 512 bands, spectral resolution 3 nm, spectral sampling 1.5 nm, and 8! field of view). Spectra were collected under clear weather conditions at the highest solar zenith angle between 10:00 and 14:00 local time. Data were collected at nadir approximately 1 m off the ground resulting in a Ground Instantaneous Field of View (GIFOV) of approximately 15 cm in diameter. Nine point measurements of upwelling radiance (Lup) were collected in each plot and averaged to characterize the spectral variability and to reduce noise. Downwelling radiance (Ldown) was measured as the reflectance from a white Spectralon© plate. Surface reflectance (R) was processed as Lup/Ldown x 100 (0-100%). Reflectance spectra were preprocessed with a Savitzky-Golay smoothing filter (n = 11) and subset to 400-985 nm to remove sensor noise at the edges of the radiometer detector. Digital camera data were acquired using a consumer-grade camera (Panasonic DM3 LMX, Japan) approximately 1 m off the ground with a white frame for registration of off nadir images. For detailed definitions of the RGB indices see metadata.docx. Leaves and stems of the dominant vascular species in a subset of the sampled plots were collected at early, peak, and late season for chlorophyll and carotenoid analysis.Samples were placed in porous tea bags and preserved in a silica gel desiccant in an opaque container for up to 3 months until pigment extraction (Esteban et al. 2009, doi:10.1007/s11120-009-9468-5). Each sample was homogenized by grinding with a mortar and pestle. Approximately 1.00 mg (+/- 0.05 mg) of homogenized sample was placed into a vial with 2 ml of dimethylformamide (DMF). Vials were then wrapped in aluminum foil to eliminate any degradation of pigments due to UV light and stored in a fridge (4C) for 24 hrs. Samples were measured into a cuvette prior to spectrophotometric analysis. Bulk pigments concentrations were then estimated using a spectrophotometer measuring absorption at 646.8, 663.8 and 480 nm (Porra et al. 1989, doi:10.1016/S0005-2728(89)80347-0) . Absorbance (A) values at specific wavelengths were transformed into µg/mg concentrations of chlorophyll a, Chla, chlorophyll b, Chlb, total chlorophyll, Chl, carotenoids, Car (for equations see metadata.docx). Pigment concentration was calculated as the average concentration of the dominant species in each plot. mean_"pigment" represents the mean of all biomass from each vegetation community and sd_"pigment" represents the standard deviation of each vegetation community.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::259c64228a9b077995053533a74c1fc0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r39633d1e8c4::259c64228a9b077995053533a74c1fc0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu