Filters
Clear AllLoading
apps Other research product2016 EnglishFrontiers Media S.A. Authors: Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf;Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf;Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=frontiers___::cbc9f129d32e79ed46c808f032357da7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=frontiers___::cbc9f129d32e79ed46c808f032357da7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2017 EnglishFrontiers Media S.A. NSERCNSERCAuthors: Chen, Lin; Mukerjee, Gouri; Dorfman, Ruslan; Moghadas, Seyed M.;Chen, Lin; Mukerjee, Gouri; Dorfman, Ruslan; Moghadas, Seyed M.;Much effort has been devoted to assess disease risk based on large-scale protein-protein network and genotype-phenotype associations. However, the challenge of risk prediction for complex diseases remains unaddressed. Here, we propose a framework to quantify the risk based on a Voronoi tessellation network analysis, taking into account the disease association scores of both genes and variants. By integrating ClinVar, SNPnexus, and DISEASES databases, we introduce a gene-variant map that is based on the pairwise disease-associated gene-variant scores. This map is clustered using Voronoi tessellation and network analysis with a threshold obtained from fitting the background Voronoi cell density distribution. We define the relative risk of disease that is inferred from the scores of the data points within the related clusters on the gene-variant map. We identify autoimmune-associated clusters that may interact at the system-level. The proposed framework can be used to determine the clusters that are specific to a subtype or contribute to multiple subtypes of complex diseases.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=frontiers___::6fc2d3f8bd0e038b571c71982677b041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=frontiers___::6fc2d3f8bd0e038b571c71982677b041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
apps Other research product2016 EnglishFrontiers Media S.A. Authors: Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf;Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf;Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=frontiers___::cbc9f129d32e79ed46c808f032357da7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=frontiers___::cbc9f129d32e79ed46c808f032357da7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euapps Other research product2017 EnglishFrontiers Media S.A. NSERCNSERCAuthors: Chen, Lin; Mukerjee, Gouri; Dorfman, Ruslan; Moghadas, Seyed M.;Chen, Lin; Mukerjee, Gouri; Dorfman, Ruslan; Moghadas, Seyed M.;Much effort has been devoted to assess disease risk based on large-scale protein-protein network and genotype-phenotype associations. However, the challenge of risk prediction for complex diseases remains unaddressed. Here, we propose a framework to quantify the risk based on a Voronoi tessellation network analysis, taking into account the disease association scores of both genes and variants. By integrating ClinVar, SNPnexus, and DISEASES databases, we introduce a gene-variant map that is based on the pairwise disease-associated gene-variant scores. This map is clustered using Voronoi tessellation and network analysis with a threshold obtained from fitting the background Voronoi cell density distribution. We define the relative risk of disease that is inferred from the scores of the data points within the related clusters on the gene-variant map. We identify autoimmune-associated clusters that may interact at the system-level. The proposed framework can be used to determine the clusters that are specific to a subtype or contribute to multiple subtypes of complex diseases.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=frontiers___::6fc2d3f8bd0e038b571c71982677b041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=frontiers___::6fc2d3f8bd0e038b571c71982677b041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu