23,332 Research products, page 1 of 2,334
Loading
- Research data . Sound . 2019Open Access EnglishAuthors:SFU's Vancity Office of Community Engagement;SFU's Vancity Office of Community Engagement;Country: Canada
In July 2017 members of the DTES community started meeting as a collective at the Hives for Humanity Bee Space to have conversation about how to ensure that community ethics are a respected part of the process of cultural production. We define cultural production as being: any time an entity comes into a community to make a product from its culture. ie. individuals and/or organisations of journalists, film makers, photographers, students, researchers, tourists or volunteers. We define community ethics as being: a set of principles to guide behaviour, based in lived experience, acknowledging the interconnectedness of our humanity, fostering relationships of respect, responsibility, reciprocity and return. We have produced a resource card and a manifesto out of these meetings which we are launching at our event on March 7th 2019, 7pm-9pm at SFU Woodwards. Copies of the card and manifesto will be available for all to take out into the community, and will be open sourced after the event. The evening included a short panel discussion with members of the collective sharing their experiences of cultural production – the good, the bad and the ugly! For more info visit: hivesforhumanity.com/communityethics/
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact. - Research data . 2021EnglishAuthors:Bukuroshi, Esmeralda; Wong, Siena; Mudigonda, Thanmayee; Nova, Kyle; Dumont, Antoine; Holst, Devon; Lu, Zheng-Hong; Bender, Timothy P.;Bukuroshi, Esmeralda; Wong, Siena; Mudigonda, Thanmayee; Nova, Kyle; Dumont, Antoine; Holst, Devon; Lu, Zheng-Hong; Bender, Timothy P.;Publisher: Cambridge Crystallographic Data CentreProject: NSERC
Related Article: Esmeralda Bukuroshi, Siena Wong, Thanmayee Mudigonda, Kyle Nova, Antoine Dumont, Devon Holst, Zheng-Hong Lu, Timothy P. Bender|2021|MSDE|6|308|doi:10.1039/D0ME00175A
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019EnglishAuthors:Land, Michael; Roberston, Katherine; Barry, Sean;Land, Michael; Roberston, Katherine; Barry, Sean;Publisher: Cambridge Crystallographic Data CentreProject: NSERC
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures. Related Article: Michael A. Land, Katherine N. Robertson, Seán T. Barry|2020|Organometallics|39|916|doi:10.1021/acs.organomet.9b00578 Related Article: Michael Land, Katherine Roberston, Sean Barry|2019|ChemRxiv|||doi:10.26434/chemrxiv.9413573.v1
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
CERN-LHC, ATLAS. A search for vector-like quarks is presented, which targets their decay into a $Z$ boson and a third-generation Standard Model quark. In the case of a vector-like quark $T$ ($B$) with charge $+2/3e$ ($-1/3e$), the decay searched for is $T \rightarrow Zt$ ($B \rightarrow Zb$). Data for this analysis were taken during 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV. The final state used is characterized by the presence of $b$-tagged jets, as well as a $Z$ boson with high transverse momentum, which is reconstructed from a pair of opposite-sign same-flavor leptons. Pair- and single-production of vector-like quarks are both taken into account and are each searched for using optimized dileptonic exclusive and trileptonic inclusive event selections. In these selections, the high scalar sum of jet transverse momenta, the presence of high-transverse-momentum large-radius jets, as well as - in the case of the single-production selections - the presence of forward jets are used. No significant excess over the background-only hypothesis is found and exclusion limits at 95% confidence level allow masses of vector-like quarks of $m_T > 1030$ GeV ($m_T > 1210$ GeV) and $m_B > 1010$ GeV ($m_B > 1140$ GeV) in the singlet (doublet) model. In the case of 100% branching ratio for $T\rightarrow Zt$ ($B\rightarrow Zb$), the limits are $m_T > 1340$ GeV ($m_B > 1220$ GeV). Limits at 95% confidence level are also set on the coupling to Standard Model quarks for given vector-like quark masses. Signal cutflows for the $B\bar B$ process in the singlet model in the PP $2\ell$ $0-1$J channel in the 1-large-$R$ jet SR. Only statistical uncertainties are shown.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2018EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
CERN-LHC. Search for the pair production of photon-jets---collimated groupings of photons---with the ATLAS detector. Highly collimated photon-jets can arise from the decay of new, highly boosted particles that can decay to multiple photons collimated enought to be identified in the electromagnetic calorimeter as a single, photon-like energy cluster. Data from proton–proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 36.7 fb$^{-1}$, were collected in 2015 and 2016. Upper limits are placed on $\sigma\times \mathcal{B}(X\rightarrow aa)\times \mathcal{B}(a\rightarrow\gamma\gamma)^2$ and $\sigma\times \mathcal{B}(X\rightarrow aa)\times \mathcal{B}(a\rightarrow 3\pi^0)^2$ for 200 GeV < $m_X$ < 2TeV and $m_a$ < 10 GeV. Tables 8 to 35 are provided to allow the recasting of the cross-section upper limits to different signal models predicting final states with photon-jets. These tables present the selection efficiency (before categorisation) $\varepsilon_{\gamma_R}(E_\mathrm{T},\eta)$ for reconstructed photons originating from a photon-jet, and the fraction $f_{\gamma_R}(E_\mathrm{T},\eta)$ of reconstructed photons with a value of the shower shape variable $\Delta E$ lower than the threshold. The fiducial region is defined as: - $E_\mathrm{T,1}>0.4\times m_X$ - $E_\mathrm{T,2}>0.3\times m_X$ - $|\eta_i| < 2.37 (i=1,2)$ (excluding $1.37 < |\eta_i| <1.52$) where $E_\mathrm{T,1}, \eta_1$ ($E_\mathrm{T,2}, \eta_2$) are the transverse energy and the pseudorapidity of the $a$ particle with the higher (the lower) transverse energy, respectively. For a resonance particle $X$ decaying into a pair of photon-jets via $X\rightarrow aa$, the total selection efficiency, $\varepsilon$, and the fraction of events in the low-$\Delta E$ category, $f$, can be computed by integrating over the p.d.f. of $(E_\mathrm{T,1},\eta_1,E_\mathrm{T,2},\eta_2)$ with the following procedure: - apply the fiducial cuts to the two $a$ particles - compute $\varepsilon$ from the integration of $\varepsilon_{\gamma_R}(E_\mathrm{T,1},\eta_1) \cdot \varepsilon_{\gamma_R}(E_\mathrm{T,2},\eta_2)$ - compute $f$ from the integration of $\varepsilon_{\gamma_R}(E_\mathrm{T,1},\eta_1) \cdot \varepsilon_{\gamma_R}(E_\mathrm{T,2},\eta_2) \cdot f_{\gamma_R}(E_\mathrm{T,1},\eta_1) \cdot f_{\gamma_R}(E_\mathrm{T,2},\eta_2)$ divided by $\varepsilon$ With the resulting value of $f$ for a given value of $m_X$, the 95% CL observed upper limit on the visible cross-section (i.e. $\sigma\times \mathcal{B}\times\varepsilon$) can be taken from Table 7, which is considered to be model-independent. The corresponding upper limit on the cross-section times branching ratios, $\sigma \times \mathcal{B}$, can be computed by dividing the obtained visible cross-section by $\varepsilon$. The estimation procedure described above is validated by comparing the results for the benchmark signal scenario decaying via $X\rightarrow aa\rightarrow 4\gamma$ with the results presented in the paper (i.e. Table 3). It is found that the two results agree within 20%, and the result with the estimation procedure described above gives lower values. The main difference is found for large values of the mass ratio, $0.005 The expected upper limits on the production cross-section times the product of branching ratios for the benchmark signal scenario involving a scalar particle $X$ with narrow width decaying via $X\rightarrow aa\rightarrow 4\gamma$, $\sigma_X\times B(X\rightarrow aa)\times B(a\rightarrow\gamma\gamma)^2$. The limits for $m_{a}$ = 5 GeV and 10 GeV do not cover as large a range as the other mass points, since the region of interest is limited to $ m_{a} < 0.01 \times m_{X}$. Additionally, the expected limits are not provided for a small number of points, indicated with a hyphen, because of a technical failure with the computation.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2020EnglishAuthors:Harding, Cayley R.; Cann, Jonathan; Laventure, Audrey; Sadeghianlemraski, Mozhgan; Abd-Ellah, Marwa; Rao, Keerthan R.; Gelfand, Benjamin Sidney; Aziz, Hany; Kaake, Loren; Risko, Chad; +1 moreHarding, Cayley R.; Cann, Jonathan; Laventure, Audrey; Sadeghianlemraski, Mozhgan; Abd-Ellah, Marwa; Rao, Keerthan R.; Gelfand, Benjamin Sidney; Aziz, Hany; Kaake, Loren; Risko, Chad; Welch, Gregory C.;Publisher: Cambridge Crystallographic Data CentreProject: NSERC , NSF | RII Track-1: Kentucky Adv... (1849213)
Related Article: Cayley R. Harding, Jonathan Cann, Audrey Laventure, Mozhgan Sadeghianlemraski, Marwa Abd-Ellah, Keerthan R. Rao, Benjamin Sidney Gelfand, Hany Aziz, Loren Kaake, Chad Risko, Gregory C. Welch|2020|Materials Horizons|7|2959|doi:10.1039/D0MH00785D
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2021EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
This paper presents results of searches for electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139/fb of sqrt(s) = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low transverse momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of R-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 GeV to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 GeV to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented. Efficiency for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
for Pb+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, opposite pairs No data abstract available.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
CERN-LHC, ATLAS. A search for a right-handed gauge boson WR, decaying into a boosted right-handed heavy neutrino NR, in the framework of Left-Right Symmetric Models is presented. It is based on data from proton-proton collisions with a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015, 2016 and 2017, corresponding to an integrated luminosity of 80 fb−1. The search is performed separately for electrons and muons in the final state. A distinguishing feature of the search is the use of large-radius jets containing electrons. Selections based on the signal topology result in smaller background compared with to expected signal. No significant deviation from the Standard Model prediction is observed and lower limits are set in the WR and NR mass plane. Mass values of the WR smaller than 3.8-5 TeV are excluded for NR in the mass range 0.1-1.8 TeV. Expected 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the electron channel.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
CERN-LHC. A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}=13\mathrm{\ Te\kern -0.1em V}$ proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 2.03$\mathrm{\ Te\kern -0.1em V}$ for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55$\mathrm{\ Te\kern -0.1em V}$ are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector. Observed and expected background and signal effective mass distributions for SR2j-2000. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
23,332 Research products, page 1 of 2,334
Loading
- Research data . Sound . 2019Open Access EnglishAuthors:SFU's Vancity Office of Community Engagement;SFU's Vancity Office of Community Engagement;Country: Canada
In July 2017 members of the DTES community started meeting as a collective at the Hives for Humanity Bee Space to have conversation about how to ensure that community ethics are a respected part of the process of cultural production. We define cultural production as being: any time an entity comes into a community to make a product from its culture. ie. individuals and/or organisations of journalists, film makers, photographers, students, researchers, tourists or volunteers. We define community ethics as being: a set of principles to guide behaviour, based in lived experience, acknowledging the interconnectedness of our humanity, fostering relationships of respect, responsibility, reciprocity and return. We have produced a resource card and a manifesto out of these meetings which we are launching at our event on March 7th 2019, 7pm-9pm at SFU Woodwards. Copies of the card and manifesto will be available for all to take out into the community, and will be open sourced after the event. The evening included a short panel discussion with members of the collective sharing their experiences of cultural production – the good, the bad and the ugly! For more info visit: hivesforhumanity.com/communityethics/
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact. - Research data . 2021EnglishAuthors:Bukuroshi, Esmeralda; Wong, Siena; Mudigonda, Thanmayee; Nova, Kyle; Dumont, Antoine; Holst, Devon; Lu, Zheng-Hong; Bender, Timothy P.;Bukuroshi, Esmeralda; Wong, Siena; Mudigonda, Thanmayee; Nova, Kyle; Dumont, Antoine; Holst, Devon; Lu, Zheng-Hong; Bender, Timothy P.;Publisher: Cambridge Crystallographic Data CentreProject: NSERC
Related Article: Esmeralda Bukuroshi, Siena Wong, Thanmayee Mudigonda, Kyle Nova, Antoine Dumont, Devon Holst, Zheng-Hong Lu, Timothy P. Bender|2021|MSDE|6|308|doi:10.1039/D0ME00175A
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019EnglishAuthors:Land, Michael; Roberston, Katherine; Barry, Sean;Land, Michael; Roberston, Katherine; Barry, Sean;Publisher: Cambridge Crystallographic Data CentreProject: NSERC
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures. Related Article: Michael A. Land, Katherine N. Robertson, Seán T. Barry|2020|Organometallics|39|916|doi:10.1021/acs.organomet.9b00578 Related Article: Michael Land, Katherine Roberston, Sean Barry|2019|ChemRxiv|||doi:10.26434/chemrxiv.9413573.v1
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
CERN-LHC, ATLAS. A search for vector-like quarks is presented, which targets their decay into a $Z$ boson and a third-generation Standard Model quark. In the case of a vector-like quark $T$ ($B$) with charge $+2/3e$ ($-1/3e$), the decay searched for is $T \rightarrow Zt$ ($B \rightarrow Zb$). Data for this analysis were taken during 2015 and 2016 with the ATLAS detector at the Large Hadron Collider and correspond to an integrated luminosity of 36.1 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}=13$ TeV. The final state used is characterized by the presence of $b$-tagged jets, as well as a $Z$ boson with high transverse momentum, which is reconstructed from a pair of opposite-sign same-flavor leptons. Pair- and single-production of vector-like quarks are both taken into account and are each searched for using optimized dileptonic exclusive and trileptonic inclusive event selections. In these selections, the high scalar sum of jet transverse momenta, the presence of high-transverse-momentum large-radius jets, as well as - in the case of the single-production selections - the presence of forward jets are used. No significant excess over the background-only hypothesis is found and exclusion limits at 95% confidence level allow masses of vector-like quarks of $m_T > 1030$ GeV ($m_T > 1210$ GeV) and $m_B > 1010$ GeV ($m_B > 1140$ GeV) in the singlet (doublet) model. In the case of 100% branching ratio for $T\rightarrow Zt$ ($B\rightarrow Zb$), the limits are $m_T > 1340$ GeV ($m_B > 1220$ GeV). Limits at 95% confidence level are also set on the coupling to Standard Model quarks for given vector-like quark masses. Signal cutflows for the $B\bar B$ process in the singlet model in the PP $2\ell$ $0-1$J channel in the 1-large-$R$ jet SR. Only statistical uncertainties are shown.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2018EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
CERN-LHC. Search for the pair production of photon-jets---collimated groupings of photons---with the ATLAS detector. Highly collimated photon-jets can arise from the decay of new, highly boosted particles that can decay to multiple photons collimated enought to be identified in the electromagnetic calorimeter as a single, photon-like energy cluster. Data from proton–proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 36.7 fb$^{-1}$, were collected in 2015 and 2016. Upper limits are placed on $\sigma\times \mathcal{B}(X\rightarrow aa)\times \mathcal{B}(a\rightarrow\gamma\gamma)^2$ and $\sigma\times \mathcal{B}(X\rightarrow aa)\times \mathcal{B}(a\rightarrow 3\pi^0)^2$ for 200 GeV < $m_X$ < 2TeV and $m_a$ < 10 GeV. Tables 8 to 35 are provided to allow the recasting of the cross-section upper limits to different signal models predicting final states with photon-jets. These tables present the selection efficiency (before categorisation) $\varepsilon_{\gamma_R}(E_\mathrm{T},\eta)$ for reconstructed photons originating from a photon-jet, and the fraction $f_{\gamma_R}(E_\mathrm{T},\eta)$ of reconstructed photons with a value of the shower shape variable $\Delta E$ lower than the threshold. The fiducial region is defined as: - $E_\mathrm{T,1}>0.4\times m_X$ - $E_\mathrm{T,2}>0.3\times m_X$ - $|\eta_i| < 2.37 (i=1,2)$ (excluding $1.37 < |\eta_i| <1.52$) where $E_\mathrm{T,1}, \eta_1$ ($E_\mathrm{T,2}, \eta_2$) are the transverse energy and the pseudorapidity of the $a$ particle with the higher (the lower) transverse energy, respectively. For a resonance particle $X$ decaying into a pair of photon-jets via $X\rightarrow aa$, the total selection efficiency, $\varepsilon$, and the fraction of events in the low-$\Delta E$ category, $f$, can be computed by integrating over the p.d.f. of $(E_\mathrm{T,1},\eta_1,E_\mathrm{T,2},\eta_2)$ with the following procedure: - apply the fiducial cuts to the two $a$ particles - compute $\varepsilon$ from the integration of $\varepsilon_{\gamma_R}(E_\mathrm{T,1},\eta_1) \cdot \varepsilon_{\gamma_R}(E_\mathrm{T,2},\eta_2)$ - compute $f$ from the integration of $\varepsilon_{\gamma_R}(E_\mathrm{T,1},\eta_1) \cdot \varepsilon_{\gamma_R}(E_\mathrm{T,2},\eta_2) \cdot f_{\gamma_R}(E_\mathrm{T,1},\eta_1) \cdot f_{\gamma_R}(E_\mathrm{T,2},\eta_2)$ divided by $\varepsilon$ With the resulting value of $f$ for a given value of $m_X$, the 95% CL observed upper limit on the visible cross-section (i.e. $\sigma\times \mathcal{B}\times\varepsilon$) can be taken from Table 7, which is considered to be model-independent. The corresponding upper limit on the cross-section times branching ratios, $\sigma \times \mathcal{B}$, can be computed by dividing the obtained visible cross-section by $\varepsilon$. The estimation procedure described above is validated by comparing the results for the benchmark signal scenario decaying via $X\rightarrow aa\rightarrow 4\gamma$ with the results presented in the paper (i.e. Table 3). It is found that the two results agree within 20%, and the result with the estimation procedure described above gives lower values. The main difference is found for large values of the mass ratio, $0.005 The expected upper limits on the production cross-section times the product of branching ratios for the benchmark signal scenario involving a scalar particle $X$ with narrow width decaying via $X\rightarrow aa\rightarrow 4\gamma$, $\sigma_X\times B(X\rightarrow aa)\times B(a\rightarrow\gamma\gamma)^2$. The limits for $m_{a}$ = 5 GeV and 10 GeV do not cover as large a range as the other mass points, since the region of interest is limited to $ m_{a} < 0.01 \times m_{X}$. Additionally, the expected limits are not provided for a small number of points, indicated with a hyphen, because of a technical failure with the computation.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2020EnglishAuthors:Harding, Cayley R.; Cann, Jonathan; Laventure, Audrey; Sadeghianlemraski, Mozhgan; Abd-Ellah, Marwa; Rao, Keerthan R.; Gelfand, Benjamin Sidney; Aziz, Hany; Kaake, Loren; Risko, Chad; +1 moreHarding, Cayley R.; Cann, Jonathan; Laventure, Audrey; Sadeghianlemraski, Mozhgan; Abd-Ellah, Marwa; Rao, Keerthan R.; Gelfand, Benjamin Sidney; Aziz, Hany; Kaake, Loren; Risko, Chad; Welch, Gregory C.;Publisher: Cambridge Crystallographic Data CentreProject: NSERC , NSF | RII Track-1: Kentucky Adv... (1849213)
Related Article: Cayley R. Harding, Jonathan Cann, Audrey Laventure, Mozhgan Sadeghianlemraski, Marwa Abd-Ellah, Keerthan R. Rao, Benjamin Sidney Gelfand, Hany Aziz, Loren Kaake, Chad Risko, Gregory C. Welch|2020|Materials Horizons|7|2959|doi:10.1039/D0MH00785D
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2021EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
This paper presents results of searches for electroweak production of supersymmetric particles in models with compressed mass spectra. The searches use 139/fb of sqrt(s) = 13 TeV proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider. Events with missing transverse momentum and two same-flavor, oppositely charged, low transverse momentum leptons are selected, and are further categorized by the presence of hadronic activity from initial-state radiation or a topology compatible with vector-boson fusion processes. The data are found to be consistent with predictions from the Standard Model. The results are interpreted using simplified models of R-parity-conserving supersymmetry in which the lightest supersymmetric partner is a neutralino with a mass similar to the lightest chargino, the second-to-lightest neutralino or the slepton. Lower limits on the masses of charginos in different simplified models range from 193 GeV to 240 GeV for moderate mass splittings, and extend down to mass splittings of 1.5 GeV to 2.4 GeV at the LEP chargino bounds (92.4 GeV). Similar lower limits on degenerate light-flavor sleptons extend up to masses of 251 GeV and down to mass splittings of 550 MeV. Constraints on vector-boson fusion production of electroweak SUSY states are also presented. Efficiency for the N2C1m VBF higgsino process in the SR-VBF-high region. Truth dilepton invariant mass is constrained to be within the range [1,40] GeV.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
for Pb+Pb, pT>0.2GeV, 40<=Nch<60, wo SRC, opposite pairs No data abstract available.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - Research data . 2019EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
CERN-LHC, ATLAS. A search for a right-handed gauge boson WR, decaying into a boosted right-handed heavy neutrino NR, in the framework of Left-Right Symmetric Models is presented. It is based on data from proton-proton collisions with a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider during the years 2015, 2016 and 2017, corresponding to an integrated luminosity of 80 fb−1. The search is performed separately for electrons and muons in the final state. A distinguishing feature of the search is the use of large-radius jets containing electrons. Selections based on the signal topology result in smaller background compared with to expected signal. No significant deviation from the Standard Model prediction is observed and lower limits are set in the WR and NR mass plane. Mass values of the WR smaller than 3.8-5 TeV are excluded for NR in the mass range 0.1-1.8 TeV. Expected 95% CL exclusion contours in the $(m_{N_R}, m_{W_R})$ plane in the electron channel.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product. - EnglishAuthors:ATLAS Collaboration;ATLAS Collaboration;Publisher: HEPDataProject: NSERC
CERN-LHC. A search for the supersymmetric partners of quarks and gluons (squarks and gluinos) in final states containing hadronic jets and missing transverse momentum, but no electrons or muons, is presented. The data used in this search were recorded in 2015 and 2016 by the ATLAS experiment in $\sqrt{s}=13\mathrm{\ Te\kern -0.1em V}$ proton--proton collisions at the Large Hadron Collider, corresponding to an integrated luminosity of 36.1 fb$^{-1}$. The results are interpreted in the context of various models where squarks and gluinos are pair-produced and the neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 2.03$\mathrm{\ Te\kern -0.1em V}$ for a simplified model incorporating only a gluino and the lightest neutralino, assuming the lightest neutralino is massless. For a simplified model involving the strong production of mass-degenerate first- and second-generation squarks, squark masses below 1.55$\mathrm{\ Te\kern -0.1em V}$ are excluded if the lightest neutralino is massless. These limits substantially extend the region of supersymmetric parameter space previously excluded by searches with the ATLAS detector. Observed and expected background and signal effective mass distributions for SR2j-2000. For signal, a squark direct decay model where squarks have mass of 1200 GeV and the neutralino1 has mass of 0 GeV is shown.
Average/low popularityAverage/low popularityAverage/low influencePopularity: Citation-based measure reflecting the current impact.Average/low influenceInfluence: Citation-based measure reflecting the total impact.add Add to ORCIDPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.