4 Research products, page 1 of 1
Loading
- Publication . ArticleEnglishAuthors:Kebli, Salima; Kihel, Omar;Kebli, Salima; Kihel, Omar;Country: HungaryProject: NSERC
- Publication . ArticleHungarianAuthors:Zám, Éva; Kádek, István;Zám, Éva; Kádek, István;Country: Hungary
- Publication . ArticleEnglishAuthors:Jones, James P.; Kiss, Péter;Jones, James P.; Kiss, Péter;Country: HungaryProject: NSERC
- Publication . ArticleEnglishAuthors:Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál;Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál;Country: HungaryProject: NSERC
We study limiting properties of a random walk on the plane, when we have a square lattice on the upper half-plane and a comb structure on the lower half-plane, i.e., horizontal lines below the x-axis are removed. We give strong approximations for the components with random time changed Wiener processes. As consequences, limiting distributions and some laws of the iterated logarithm are presented. Finally, a formula is given for the probability that the random walk returns to the origin in 2N steps.
4 Research products, page 1 of 1
Loading
- Publication . ArticleEnglishAuthors:Kebli, Salima; Kihel, Omar;Kebli, Salima; Kihel, Omar;Country: HungaryProject: NSERC
- Publication . ArticleHungarianAuthors:Zám, Éva; Kádek, István;Zám, Éva; Kádek, István;Country: Hungary
- Publication . ArticleEnglishAuthors:Jones, James P.; Kiss, Péter;Jones, James P.; Kiss, Péter;Country: HungaryProject: NSERC
- Publication . ArticleEnglishAuthors:Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál;Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál;Country: HungaryProject: NSERC
We study limiting properties of a random walk on the plane, when we have a square lattice on the upper half-plane and a comb structure on the lower half-plane, i.e., horizontal lines below the x-axis are removed. We give strong approximations for the components with random time changed Wiener processes. As consequences, limiting distributions and some laws of the iterated logarithm are presented. Finally, a formula is given for the probability that the random walk returns to the origin in 2N steps.