Filters
Clear AllLoading
description Publicationkeyboard_double_arrow_right Article Hungary HungarianAuthors: Zám, Éva; Kádek, István;Zám, Éva; Kádek, István;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3812::5c14a3e1a5c6750606f1c266df6fef5d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3812::5c14a3e1a5c6750606f1c266df6fef5d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article Hungary English NSERCNSERCAuthors: Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál;Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál;We study limiting properties of a random walk on the plane, when we have a square lattice on the upper half-plane and a comb structure on the lower half-plane, i.e., horizontal lines below the x-axis are removed. We give strong approximations for the components with random time changed Wiener processes. As consequences, limiting distributions and some laws of the iterated logarithm are presented. Finally, a formula is given for the probability that the random walk returns to the origin in 2N steps.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3812::bba992ee2a4fc0fc5b1a6be477bcf453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3812::bba992ee2a4fc0fc5b1a6be477bcf453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Article Hungary HungarianAuthors: Zám, Éva; Kádek, István;Zám, Éva; Kádek, István;All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3812::5c14a3e1a5c6750606f1c266df6fef5d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3812::5c14a3e1a5c6750606f1c266df6fef5d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article Hungary English NSERCNSERCAuthors: Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál;Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál;We study limiting properties of a random walk on the plane, when we have a square lattice on the upper half-plane and a comb structure on the lower half-plane, i.e., horizontal lines below the x-axis are removed. We give strong approximations for the components with random time changed Wiener processes. As consequences, limiting distributions and some laws of the iterated logarithm are presented. Finally, a formula is given for the probability that the random walk returns to the origin in 2N steps.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3812::bba992ee2a4fc0fc5b1a6be477bcf453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3812::bba992ee2a4fc0fc5b1a6be477bcf453&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu