search
163,036 Research products

  • Canada
  • Publications
  • CN
  • ES

10
arrow_drop_down
Relevance
arrow_drop_down
  • Authors: Yanfei Huang; Yan Zhang; Xinying Li; Jinjun Liu; +1 Authors

    For single-phase DC-AC power conversion, power decoupling is always required due to the existence of double-line-frequency ripple caused by the instantaneous unbalanced power between AC and DC side. The typical power decoupling method utilizes a large electrolytic capacitor and consequently increases the passive components requirement. The active power decoupling scheme introduces an additional low power converter to compensate the ripple, which inevitably increases the system cost and control complexity. To overcome these drawbacks, this paper proposes a novel suppression method based on three-level topology. By optimizing the capacitance design and improved control algorithm, the instantaneous unbalanced power is dynamically redistributed between two series connected intermediate capacitors in order to make the capacitor voltage ripple complementary to each other. Thus the de-link voltage ripple can be reduced to a large extent. Simulation verifies the correctness and effectiveness of the new suppression method.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kenia Shaily Correa‐Jaraba; Samira Mellah; Isaora Zefania Dialahy; CIMA‐Q Group; +1 Authors

    AbstractBackgroundBrain hyperactivation — defined as higher level of activation compared to controls — was suggested as a very early signature of prodromal Alzheimer’s disease (AD), which would gradually decrease with progression to dementia. Longitudinal studies with people who have mild cognitive impairment (MCI) and subjective cognitive decline (SCD) can be used to capture the temporal dynamics and inter‐individual differences of these very early activation changes. Here, we aimed to identify the temporal trajectory of task‐related activation in participants with SCD and MCI from the CIMA‐Q cohort, which has data collected at multiple time‐points. We thus identified subgroups based on their common activation trajectory and characterized subgroups defined from the activation trajectory.MethodThe study included 53 older participants (40 SCD; 13 MCI) from the CIMA‐Q cohort with neuroimaging data collected over at least two time‐points (66‐85 years old; 36 women, 17 men). An fMRI examination was done every two years (2‐4 time‐points; average follow‐up: 3.2 years). Task‐related activation was measured during an associative memory encoding task. Group‐based trajectory models were estimated to identify homogeneous groups of participants based on activation trajectories in the hippocampus and in regions from the cortical signature of AD. Groups defined based on activation trajectories were then compared using Apolipoprotein‐ε4 (ApoE4), baseline cognition and hippocampal volume.ResultTwo different trajectories of activation were identified: Trajectory 1 was found in several cortical regions and was characterized by a high level of initial activation, which decreased over time. Trajectory 2 was characterized by a lower activation level, which remained stable over time or increased slightly on time‐point 4. Smaller hippocampal volume and ApoE4 were associated with Trajectory 1 for the left angular gyrus, and left hippocampal and right middle temporal gyrus activation, respectively.ConclusionAn inverted U‐shape trajectory was found with high activation followed by gradually decreasing activation in AD‐signature regions. This trajectory was associated with smaller hippocampal volume and/or the presence of ApoE4 allele, both of which are biomarkers that increase the likelihood of developing AD. This finding supports the hypothesis that the inverted U‐shape trajectory of hyperactivation could be an index of prodromal AD.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alzheimer s & Dement...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alzheimer s & Dementia
    Article . 2023
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alzheimer s & Dement...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alzheimer s & Dementia
      Article . 2023
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Villaverde, Tamara; Global Carex Group;

    Carex (Cyperaceae), with an estimated 2000 species, nearly cosmopolitan distribution and broad range of habitats, is one of the largest angiosperm genera and the largest in the temperate zone. In this article, we provide argument and evidence for a broader circumscription of Carex to add all species currently classified in Cymophyllus (monotypic), Kobresia (c. 60 species), Schoenoxiphium (c. 15 species) and Uncinia (c. 70 species) to those currently classified as Carex. Carex and these genera comprise tribe Cariceae (subfamily Cyperoideae, Cyperaceae) and form a wellsupported monophyletic group in all molecular phylogenetic studies to date. Carex as defined here in the broad sense currently comprises at least four clades. Three are strongly supported (Siderostictae, core Vignea and core Carex), whereas the caricoid clade, which includes all the segregate genera, receives only weak to moderate support. The caricoid clade is most commonly split into two clades, one including a monophyletic Schoenoxiphium and two small clades of species of Carex s.s., and the other comprising Kobresia, Uncinia and mostly unispicate species of Carex s.s. Morphological variation is high in all but the Vignea clade, making it extremely difficult to define consistent synapomorphies for most clades. However, Carex s.l. as newly circumscribed here is clearly differentiated from the sister groups in tribe Scirpeae by the transition from bisexual flowers with a bristle perianth in the sister group to unisexual flowers without a perianth in Carex. The naked female flowers of Carex s.l. are at least partially enclosed in a flask-shaped prophyll, termed a perigynium. Carex s.s. is not only by far the largest genus in the group, but also the earliest published name. As a result, only 72 new combinations and 58 replacement names are required to treat all of tribe Cariceae as a single genus Carex. We present the required transfers here, with synonymy, and we argue that this broader monophyletic circumscription of Carex reflects the close evolutionary relationships in the group and serves the goal of nomenclatural stability better than other possible treatments. We are grateful to the John D. and Catherine T. MacArthur Foundation for funding of the Biodiversity Synthesis Group of the Encyclopedia of Life (EOL) project, which funded our BioSynC Synthesis meeting at the Field Museum in Chicago in September 2011, when the Global Carex Group was formed. We also thank the US National Science Foundation (NSF) for funding our continuing international collaborative work on the phylogeny and classification of Carex under grants DEB 1255901 to ALH and MJW, and DEB 1256033 to EHR. We also acknowledge with thanks funding for nomenclatural research and for attendance at our second meeting during the Monocots V conference in New York in July, 2013, from the Natural Sciences and Engineering Research Council, Canada (NSERC) to MJW and JRS; University of Mainz to BG; JSPS KAKENHI Grant no. 25840136 to OY; Korea National Arboretum to SK; CGL2012- 38744 project from the Spanish Ministry of Economy and Competitiveness to ML; project 30870178 from the National Natural Science Foundation of China to SRZ, and a University of Wisconsin-Madison Raper Travel Grant to DS. The figures were prepared with invaluable technical advice from H. C. Rimmer. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tao Shi; Hongwen Huang; Michael S. Barker;

    Background and aims To assess the number and phylogenetic distribution of large-scale genome duplications in the ancestry of Actinidia, publicly available expressed sequenced tags (ESTs) for members of the Actinidiaceae and related Ericales, including tea (Camellia sinensis), were analysed. Methods Synonymous divergences (K(s)) were calculated for all duplications within gene families and examined for evidence of large-scale duplication events. Phylogenetic comparisons for a selection of orthologues among several related species in Ericales and two outgroups permitted placement of duplication events in relation to lineage divergences. Gene ontology (GO) categories were analysed for each whole-genome duplication (WGD) and the whole transcriptome. Key results Evidence for three ancient WGDs in Actinidia was found. Analyses of paleologue GO categories indicated a different pattern of retained genes for each genome duplication, but a pattern consistent with the dosage-balance hypothesis among all retained paleologues. Conclusions This study provides evidence for one independent WGD in the ancestry of Actinidia (Ad-alpha), a WGD shared by Actinidia and Camellia (Ad-beta), and the well-established At-gamma WGD that occurred prior to the divergence of all taxa examined. More ESTs in other taxa are needed to elucidate which groups in Ericales share the Ad-beta or Ad-alpha duplications and their impact on diversification.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Other literature type . 2010
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Annals of Botany
    Article
    Data sources: UnpayWall
    Annals of Botany
    Article . 2010
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    82
    citations82
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Europe PubMed Central
      Other literature type . 2010
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Annals of Botany
      Article
      Data sources: UnpayWall
      Annals of Botany
      Article . 2010
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Martin Egozcue; Luis Fuentes García; Wing-Keung Wong; Ričardas Zitikis;

    We study rankings of completely and partially diversified portfolios and also of specialized assets when investors follow so-called Markowitz preferences. It turns out that diversification strategies for Markowitz investors are more complex than in the case of risk-averse and risk-inclined investors, whose investment strategies have been extensively investigated in the literature. In particular, we observe that for Markowitz investors, preferences toward risk vary depending on their sensitivities toward gains and losses. For example, it turns out that, unlike in the case of risk-averse and risk-inclined investors, Markowitz investors might prefer investing their entire wealth in just one asset. This finding helps us to better understand some financial anomalies and puzzles, such as the well known diversification puzzle, which notes that some investors tend to concentrate on investing in only a few assets instead of choosing the seemingly more attractive complete diversification.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Journal of Operational Research
    Article . 2011
    License: Elsevier TDM
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2010
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    54
    citations54
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao European Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      European Journal of Operational Research
      Article . 2011
      License: Elsevier TDM
      Data sources: Crossref
      SSRN Electronic Journal
      Article . 2010
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Zhujun J. Gu; G. Arturo Sánchez-Azofeifa; Jilu Feng; Sen Cao;

    This study analyzed the predictability of leaf area index (LAI) to the variation of vegetation type, observation angle, and vegetation index (VI). The analysis was conducted by using the R 2 of the LAI-VI models between in situ measured LAIs and VIs derived from CHRIS/PROBA data. The results show that the discrepancy of vegetation type mostly influences the LAI-VI models. The predictability of LAI to the variation of both vegetation type and index demonstrates the differences of oblique/vertical and backward/forward observa- tions, and backward series are greater than the forward. The predictabilities of LAI to the varia- tion of observation angle are greatest for the soil-adjusted VIs and least for the traditional ratio-based indices. Multivariable linear modeling with all VIs from all five angles yields accept- able accuracy except for the sparse shrub. The backward less-oblique observation (�36 deg )i s the only angle chosen in the modeling for grass, shrub, and broad leafforest, while the nadir view performs best for forests with coniferous trees. These results provide a reference to multiangular LAI estimation for different vegetation communities. VIs accounting for angular soil effects require further investigation in the future. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. (DOI: 10.1117/1.JRS.9.096085)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied R...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Applied Remote Sensing
    Article
    License: CC BY
    Data sources: UnpayWall
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    9
    citations9
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Applied R...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Applied Remote Sensing
      Article
      License: CC BY
      Data sources: UnpayWall
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Fallahpour Reza, Mehdi; Megías Jiménez, David;

    This article presents a novel high capacity audio watermarking system to embed data and extract them in a bit-exact manner by changing some of the magnitudes of the FFT spectrum. The key idea is to divide the FFT spectrum into short frames and change the magnitude of the selected FFT samples using Fibonacci numbers. Taking advantage of Fibonacci numbers, it is possible to change the frequency samples adaptively. In fact, the suggested technique guarantees and proves, mathematically, that the maximum change is less than 61% of the related FFT sample and the average error for each sample is 25%. Using the closest Fibonacci number to FFT magnitudes results in a robust and transparent technique. On top of very remarkable capacity, transparency and robustness, this scheme provides two parameters which facilitate the regulation of these properties. The experimental results show that the method has a high capacity (700 bps to 3 kbps), without significant perceptual distortion (ODG is about -1) and provides robustness against common audio signal processing such as echo, added noise, filtering and MPEG compression (MP3). In addition to the experimental results, the fidelity of suggested system is proved mathematically.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE/ACM Transactions on Audio Speech and Language Processing
    Article . 2015
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    40
    citations40
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE/ACM Transactions on Audio Speech and Language Processing
      Article . 2015
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lei Xiang; Shane D. Schoepfer; Shu-zhong Shen; Changqun Cao; +1 Authors

    Abstract The “Cambrian explosion” is one of the most fascinating episodes of diversification in the history of life; however, its relationship to the oxygenation of the oceans and atmosphere around the Ediacaran–Cambrian transition is not fully understood. Marine inventories of redox-sensitive trace elements reflect the relative balance of oxidative weathering on land and deposition in anoxic water masses, and can be used to explore the evolution of oceanic and atmospheric redox conditions. For this study, we conducted a series of geochemical analyses on the upper Lantian, Piyuancun, and Hetang formations in the Chunye-1 well, part of the lower Yangtze Block in western Zhejiang. Iron speciation results indicate that the entire studied interval was deposited under anoxic conditions, with three intervals of persistent euxinia occurring in the uppermost Lantian Fm., the lower Hetang Formation (Fm.), and the upper Hetang Fm. Molybdenum (Mo) and uranium (U) contents and Mo/TOC and U/TOC ratios from the anoxic/euxinic intervals of the Chunye-1 well, combined with published data from the sections in the middle and upper Yangtze Block, suggest that the oceanic Mo reservoir declined consistently from the Ediacaran to Cambrian Stage 3, while the size of the oceanic U reservoir remained relatively constant. Both metals were depleted in the ocean in lower Cambrian Stage 4, before increasing markedly at the end of Stage 4. The lack of an apparent increase in the size of the marine Mo and U reservoir from the upper Ediacaran to Cambrian Stage 3 suggests that oxic water masses did not expand until Cambrian Stage 4. The increase in marine Mo and U availability in the upper Hetang Fm. may have been due to the expansion of oxic water masses in the oceans, associated with oxygenation of the atmosphere during Cambrian Stage 4. This expansion of oxic waters in the global ocean postdates the main phase of Cambrian diversification, suggesting that pervasive oxygenation of the ocean on a large scale was not the primary control on animal diversity following the Ediacaran–Cambrian transition.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Earth and Planetary ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Earth and Planetary Science Letters
    Article . 2017
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    45
    citations45
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Earth and Planetary ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Earth and Planetary Science Letters
      Article . 2017
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wanzhi Li; Jinman Wang; Yafu Zhang; Min Zhang;

    Abstract Soil and vegetation, as the basic structural unit of artificial ecosystems, play an important role in ecological restoration in opencast coal mining areas, and both exhibit a complex interaction. However, the traditional method cannot well characterize the inter action between the soil and vegetation. In order to reveal the interaction between soil and vegetation in the reclaimed area of opencast coalmine, and explore the interaction mechanism between soil and vegetation, the soil and vegetation data from 70 reclaimed points in Antaibao and Anjialing opencast coal mines in Shanxi province of China were selected to conduct an investigation study. Ten soil and three vegetation indicators were determined, and the joint multifractal method was innovatively introduced to characterize the relationships of soil and vegetation on multiple scales using joint multifractal spectra and grayscale images. The interaction between soil and vegetation can be clearly obtained using the joint multifractal method. The canopy density was negatively correlated with soil bulk density, silt content, and pH; whereas, it was positively correlated with rock content, sand content, total nitrogen, soil organic matter, available phosphorus, and available potassium content. The average diameter at breast height was negatively correlated with soil bulk density, clay content, and pH; however, it was positively correlated with silt content, sand content, total nitrogen, soil organic matter, available phosphorus, and available potassium content. The herb coverage was negatively correlated with rock content, silt content, clay content, pH, soil organic matter, available phosphorus and available potassium content. Soil bulk density and clay content showed negative correlation with herb coverage. Compared to the traditional method, the novel joint multifractal method can more accurately charecterize the correlations from multiple scales. This novel method can be used to study the interaction between soil and vegetation.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DOAJ-Articlesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    DOAJ-Articles
    Article . 2021
    Data sources: DOAJ-Articles
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Ecological Indicators
    Article . 2021
    License: CC BY NC ND
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DOAJ-Articlesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      DOAJ-Articles
      Article . 2021
      Data sources: DOAJ-Articles
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Ecological Indicators
      Article . 2021
      License: CC BY NC ND
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
163,036 Research products
  • Authors: Yanfei Huang; Yan Zhang; Xinying Li; Jinjun Liu; +1 Authors

    For single-phase DC-AC power conversion, power decoupling is always required due to the existence of double-line-frequency ripple caused by the instantaneous unbalanced power between AC and DC side. The typical power decoupling method utilizes a large electrolytic capacitor and consequently increases the passive components requirement. The active power decoupling scheme introduces an additional low power converter to compensate the ripple, which inevitably increases the system cost and control complexity. To overcome these drawbacks, this paper proposes a novel suppression method based on three-level topology. By optimizing the capacitance design and improved control algorithm, the instantaneous unbalanced power is dynamically redistributed between two series connected intermediate capacitors in order to make the capacitor voltage ripple complementary to each other. Thus the de-link voltage ripple can be reduced to a large extent. Simulation verifies the correctness and effectiveness of the new suppression method.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    2
    citations2
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kenia Shaily Correa‐Jaraba; Samira Mellah; Isaora Zefania Dialahy; CIMA‐Q Group; +1 Authors

    AbstractBackgroundBrain hyperactivation — defined as higher level of activation compared to controls — was suggested as a very early signature of prodromal Alzheimer’s disease (AD), which would gradually decrease with progression to dementia. Longitudinal studies with people who have mild cognitive impairment (MCI) and subjective cognitive decline (SCD) can be used to capture the temporal dynamics and inter‐individual differences of these very early activation changes. Here, we aimed to identify the temporal trajectory of task‐related activation in participants with SCD and MCI from the CIMA‐Q cohort, which has data collected at multiple time‐points. We thus identified subgroups based on their common activation trajectory and characterized subgroups defined from the activation trajectory.MethodThe study included 53 older participants (40 SCD; 13 MCI) from the CIMA‐Q cohort with neuroimaging data collected over at least two time‐points (66‐85 years old; 36 women, 17 men). An fMRI examination was done every two years (2‐4 time‐points; average follow‐up: 3.2 years). Task‐related activation was measured during an associative memory encoding task. Group‐based trajectory models were estimated to identify homogeneous groups of participants based on activation trajectories in the hippocampus and in regions from the cortical signature of AD. Groups defined based on activation trajectories were then compared using Apolipoprotein‐ε4 (ApoE4), baseline cognition and hippocampal volume.ResultTwo different trajectories of activation were identified: Trajectory 1 was found in several cortical regions and was characterized by a high level of initial activation, which decreased over time. Trajectory 2 was characterized by a lower activation level, which remained stable over time or increased slightly on time‐point 4. Smaller hippocampal volume and ApoE4 were associated with Trajectory 1 for the left angular gyrus, and left hippocampal and right middle temporal gyrus activation, respectively.ConclusionAn inverted U‐shape trajectory was found with high activation followed by gradually decreasing activation in AD‐signature regions. This trajectory was associated with smaller hippocampal volume and/or the presence of ApoE4 allele, both of which are biomarkers that increase the likelihood of developing AD. This finding supports the hypothesis that the inverted U‐shape trajectory of hyperactivation could be an index of prodromal AD.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alzheimer s & Dement...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Alzheimer s & Dementia
    Article . 2023
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Alzheimer s & Dement...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Alzheimer s & Dementia
      Article . 2023
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Villaverde, Tamara; Global Carex Group;

    Carex (Cyperaceae), with an estimated 2000 species, nearly cosmopolitan distribution and broad range of habitats, is one of the largest angiosperm genera and the largest in the temperate zone. In this article, we provide argument and evidence for a broader circumscription of Carex to add all species currently classified in Cymophyllus (monotypic), Kobresia (c. 60 species), Schoenoxiphium (c. 15 species) and Uncinia (c. 70 species) to those currently classified as Carex. Carex and these genera comprise tribe Cariceae (subfamily Cyperoideae, Cyperaceae) and form a wellsupported monophyletic group in all molecular phylogenetic studies to date. Carex as defined here in the broad sense currently comprises at least four clades. Three are strongly supported (Siderostictae, core Vignea and core Carex), whereas the caricoid clade, which includes all the segregate genera, receives only weak to moderate support. The caricoid clade is most commonly split into two clades, one including a monophyletic Schoenoxiphium and two small clades of species of Carex s.s., and the other comprising Kobresia, Uncinia and mostly unispicate species of Carex s.s. Morphological variation is high in all but the Vignea clade, making it extremely difficult to define consistent synapomorphies for most clades. However, Carex s.l. as newly circumscribed here is clearly differentiated from the sister groups in tribe Scirpeae by the transition from bisexual flowers with a bristle perianth in the sister group to unisexual flowers without a perianth in Carex. The naked female flowers of Carex s.l. are at least partially enclosed in a flask-shaped prophyll, termed a perigynium. Carex s.s. is not only by far the largest genus in the group, but also the earliest published name. As a result, only 72 new combinations and 58 replacement names are required to treat all of tribe Cariceae as a single genus Carex. We present the required transfers here, with synonymy, and we argue that this broader monophyletic circumscription of Carex reflects the close evolutionary relationships in the group and serves the goal of nomenclatural stability better than other possible treatments. We are grateful to the John D. and Catherine T. MacArthur Foundation for funding of the Biodiversity Synthesis Group of the Encyclopedia of Life (EOL) project, which funded our BioSynC Synthesis meeting at the Field Museum in Chicago in September 2011, when the Global Carex Group was formed. We also thank the US National Science Foundation (NSF) for funding our continuing international collaborative work on the phylogeny and classification of Carex under grants DEB 1255901 to ALH and MJW, and DEB 1256033 to EHR. We also acknowledge with thanks funding for nomenclatural research and for attendance at our second meeting during the Monocots V conference in New York in July, 2013, from the Natural Sciences and Engineering Research Council, Canada (NSERC) to MJW and JRS; University of Mainz to BG; JSPS KAKENHI Grant no. 25840136 to OY; Korea National Arboretum to SK; CGL2012- 38744 project from the Spanish Ministry of Economy and Competitiveness to ML; project 30870178 from the National Natural Science Foundation of China to SRZ, and a University of Wisconsin-Madison Raper Travel Grant to DS. The figures were prepared with invaluable technical advice from H. C. Rimmer. Peer reviewed

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tao Shi; Hongwen Huang; Michael S. Barker;

    Background and aims To assess the number and phylogenetic distribution of large-scale genome duplications in the ancestry of Actinidia, publicly available expressed sequenced tags (ESTs) for members of the Actinidiaceae and related Ericales, including tea (Camellia sinensis), were analysed. Methods Synonymous divergences (K(s)) were calculated for all duplications within gene families and examined for evidence of large-scale duplication events. Phylogenetic comparisons for a selection of orthologues among several related species in Ericales and two outgroups permitted placement of duplication events in relation to lineage divergences. Gene ontology (GO) categories were analysed for each whole-genome duplication (WGD) and the whole transcriptome. Key results Evidence for three ancient WGDs in Actinidia was found. Analyses of paleologue GO categories indicated a different pattern of retained genes for each genome duplication, but a pattern consistent with the dosage-balance hypothesis among all retained paleologues. Conclusions This study provides evidence for one independent WGD in the ancestry of Actinidia (Ad-alpha), a WGD shared by Actinidia and Camellia (Ad-beta), and the well-established At-gamma WGD that occurred prior to the divergence of all taxa examined. More ESTs in other taxa are needed to elucidate which groups in Ericales share the Ad-beta or Ad-alpha duplications and their impact on diversification.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Europe PubMed Central
    Other literature type . 2010
    Data sources: PubMed Central
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Annals of Botany
    Article
    Data sources: UnpayWall
    Annals of Botany
    Article . 2010
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    82
    citations82
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Europe PubMed Centra...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Europe PubMed Central
      Other literature type . 2010
      Data sources: PubMed Central
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Annals of Botany
      Article
      Data sources: UnpayWall
      Annals of Botany
      Article . 2010
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Martin Egozcue; Luis Fuentes García; Wing-Keung Wong; Ričardas Zitikis;

    We study rankings