IMEC
533 Projects, page 1 of 107
- Project . 2016 - 2018Open Access mandate for Publications and Research dataFunder: EC Project Code: 661092Overall Budget: 160,800 EURFunder Contribution: 160,800 EURPartners: IMEC
A smart contact lens is a device in direct contact with the eye, having integrated electronic functionalities in order to improve the well-being of the user. In that respect, these devices are envisaged to address diverse complex aspects, such as providing augmented reality, performing biomedical sensing and correcting or improving vision. For the first two application areas, possible approaches have already been demonstrated. However, the use of smart contact lenses to correct vision has only been recently proposed through the help of integrated liquid crystal (LC) cells. The integration of these LC cells in a contact lens is in particular appealing for ophthalmological disorders like iris perforation and presbyopia; the latter alone affecting more than 1 billion people. The STRETCHLENS platform envisages the hybrid integration of electro-optic capabilities (e.g. LC cells), RF transmission (e.g. antenna, ultra-thin Si chip - UTC), specific biomarker sensing (e.g. to identify some types of cancer cells) and thin-film based stretchable electrical interconnections. The platform, besides being stretchable due to the spherical shape of eye and manipulations during insertion/extraction of the lens, will incorporate novel 3-D electrical interconnections which will allow for multilayer metallization to integrate UTC’s, minimizing surface area and greatly improving miniaturization. Furthermore, the project will develop new knowledge through technological advancement and models of adhesion/cohesion at the interface of hard/soft composites, in order to predict delamination failures and optimize assemblies through design. The completion and development of such highly integrated stretchable systems will open up diverse research opportunities in the fields of biomaterial science, stretchable micromechanics, and autonomous biomedical and conformal electronics smart systems.
- Project . 2022 - 2024Open Access mandate for PublicationsFunder: EC Project Code: 101032241Overall Budget: 166,320 EURFunder Contribution: 166,320 EURPartners: IMEC
Topological materials (TM) show fascinating properties such as small bulk bandgaps and robust surface states with Dirac dispersion, Floquet-Bloch states and spin-momentum locking. Their topological nature means these states are resistant to change, and thus stable to temperature fluctuations and physical distortion, features that could make them useful in quantum computers and ultrafast electronic devices. In order to reap the full benefits of TM and tailor their properties, understanding of the phenomena related to electron-electron, electron-spin and electron-phonon interactions, occurring on a femto- to attosecond timescale, is required. Ultrafast Time- and Angle-Resolved Photoemission Spectroscopy (tr-ARPES) is the expertise of the experienced researcher (ER) and is the technique that will be implemented in this work. It will be employed for investigating novel industry-grade TM that are developed in parallel research activities at the host IMEC in Leuven, Belgium. State-of-the-art attosecond high harmonic generation laser light coupled with a powerful imaging electron spectrometer will be employed in ultrafast pump–probe experiments to disentangle all coupled interactions between the charge, spin, lattice and electronic degrees of freedom of novel TM. The researcher’s academic background in ultrafast laser spectroscopy perfectly complements research conducted at the host IMEC, one of largest independent R&D centers worldwide in the field of nanoelectronics delivering industry-relevant technology solutions by leveraging its global industrial partner network. AttoPES will take attosecond science to the next level and contribute to accelerate the development of new TM complement for nanoelectronics. It will benefit from the extensive expertise available in IMEC’s groups and enable the ER to diversify his competences, creativity and innovation potential to strengthen his profile as a time-resolved photoelectron spectroscopy top-class researcher
- Project . 2019 - 2023Open Access mandate for PublicationsFunder: EC Project Code: 805222Overall Budget: 1,499,620 EURFunder Contribution: 1,499,620 EURPartners: IMEC
Fluorescent microscopy is an indispensable tool in biology and medicine that has fueled many breakthroughs in a wide set of sub-domains. Recently the world of microscopy has witnessed a true revolution in terms of increased resolution of fluorescent imaging techniques. To break the intrinsic diffraction limit of the conventional microscope, several advanced super-resolution techniques were developed, some of which have even been awarded with the Nobel Prize in 2014. High resolution microscopy is also responsible for the spectacular cost reduction of DNA sequencing during the last decade. Yet, these techniques remain largely locked-up in specialized laboratories as they require bulky, expensive instrumentation and highly skilled operators. The next big push in microscopy with a large societal impact will come from extremely compact and robust optical systems that will make high-resolution (fluorescence) microscopy highly accessible, enabling both cellular diagnostics at the point of care and the development of compact, cost-effective DNA sequencing instruments, facilitating early diagnosis of cancer and other genomic disorders. IROCSIM will facilitate this next breakthrough by introducing a novel high-resolution imaging platform based entirely on an intimate marriage of active on-chip photonics and CMOS image sensors. This concept will completely eliminate the necessity of standard free-space optical components by integrating specially designed structured optical illumination, illumination modulation, an excitation filter and an image sensor in a single chip. The resulting platform will enable high resolution, fast, robust, zero-maintenance, and inexpensive microscopy with applications reaching from cellomics to DNA sequencing, proteomics, and highly parallelized optical biosensors.
- Project . 2020 - 2022Open Access mandate for PublicationsFunder: EC Project Code: 894840Overall Budget: 166,320 EURFunder Contribution: 166,320 EURPartners: IMEC
Moore’s law has enabled the $4 trillion worldwide IT industry to nearly double the performance and functionality of digital electronics roughly every two years within a fixed cost and area. However, the International Semiconductor Technology Blueprint (ITRS) predicts that the technological underpinnings for Moore’s law will end by 2025. IRTS points out that two-dimensional (2D) materials will bring new opportunities for the Post-Moore Era, especially for the CMOS technology beyond 5 nm node. However, very few 2D materials based electronic products are available commercially over the decades of study. With the scaling-down of the electronic devices, it is urgent for academia and industry to seek ways to integrate 2D materials in practical and commercial electronic devices. Introducing 2D materials in the structure of commercial electronic devices is challenging due to their complex synthesis and manipulation. The 2D-HETERO project will explore large wafer-scale (from 2-inch to 300 mm) and uniform growth of different 2D materials by chemical vapor deposition (CVD) method. Van der Waals heterostructures based on different 2D materials will be developed by stacking 2D materials through the direct growth or through clean and large wafer-scale transfer methods. The developed high quality and wafer-scale van der Waals heterostructures will be integrated in different nanoelectronics (mainly field effect transistors), with the goal of enhancing the device performance, yield and uniformity. Using an interdisciplinary approach that combines materials science, physics, electrical engineering, industry-relevant nanofabrication and characterization, 2D-HETERO will pave the way to industrialize 2D materials based nanoelectronics. The combination of learning through research and a comprehensive training plan, including both scientific and technological as well as soft skills, will strongly enhance the profile of the applicant and provide a boost for her future scientific career.
- Project . 2023 - 2025Open Access mandate for Publications and Research dataFunder: EC Project Code: 101063162Funder Contribution: 175,920 EURPartners: IMEC
Soft electronic devices are indispensable for the development of artificial skin due to their high stretchability and sensing functionality. Conventionally, to mimic touch and temperature sensing of mechanoreceptors and thermoreceptors, compliant structural design accompanied with signal transduction mechanism such as piezoresistive, capacitive, piezoelectric, pyroelectric sensing have been utilized so far. The design of these pressure sensors requires highly flexible and robust electrical properties of materials as active and supporting components. In addition, strategically engineered micro-structure is employed to enhance the sensing performance. In this spirit, flexoelectric material, which relates strain-gradient and electrical polarization, emerges as a naturally suitable candidates for flexible pressure sensors. The strain-gradient-induced polarization does not only distinguish flexoelectricity from the commonly used piezoelectricity but also widen the choice of electro-mechanical coupling materials, especially lead-free and bio-compatible materials that are crucial for the development of biomedical devices. Furthermore, flexoelectric effect exhibits size-dependent behavior, particularly at sub-micron- and nano-scale so that proper design of micro-structure can open an opportunity to a new type of pressure sensor. Therefore, this project aims to propose a novel design for electronic skin (e-skin) based on flexoelectric effect. Specifically, a comprehensive virtual design framework including simulation, characterization and experimental testing of flexoelectric-based sensor will be employed to evaluate key parameters such as sensitivity, limit of detection, linearity, response time and power consumption.