auto_awesome_motion View all 6 versions
organization

Brunel University London

Country: United Kingdom
190 Projects, page 1 of 38
  • Funder: EC Project Code: 255182
    Partners: Brunel University London
  • Open Access mandate for Publications and Research data
    Funder: EC Project Code: 844023
    Overall Budget: 224,934 EURFunder Contribution: 224,934 EUR
    Partners: Brunel University London

    Internal combustion engines (ICEs) generally convert only approximately 40% of the fuel energy into useful power and discharge the remaining energy as waste heat to the atmosphere. Organic Rankine Cycle-based, Waste Heat Recovery (ORC - WHR) systems can be used to convert this untapped heat source and convert it into mechanical/electrical power thus allowing a reduction of fuel consumption and CO2 emissions by as much as or more than 15%. The technology readiness level (TRL) for automotive application is still low mainly because of the ORC system’s lack of performance at part load/off-design conditions and control complexities. The aim of “SuperVGE” is to develop a novel turbine equipped with a variable geometry turbine expander (VGE) nozzle design suitable for supersonic flow and wide range of operation. In addition, appropriate control schemes will be developed to allow high efficiency and power to be generated throughout its dynamic operating range. The project will be supported throughout by other world-leading academic and industrial partners including training secondments to the Technical University of Delft (TUDelft), the Technical University of Denmark (DTU), collaboration and training with industry (FIAT & Enogia) all of which will equip Dr. Usman with a unique insight to ORC and turbo-generator design and application. The training will broaden the researcher’s skills and his carrier prospects in the field. The findings will be relevant to the transportation and clean energy sectors and will be widely disseminated to industry, academia and the public, thus helping to attain socio-economic and environmental targets in the context of the EU 2020 strategic vision.

  • Funder: EC Project Code: 300596
    Partners: Brunel University London
  • Open Access mandate for Publications and Research data
    Funder: EC Project Code: 893469
    Overall Budget: 224,934 EURFunder Contribution: 224,934 EUR
    Partners: Brunel University London

    The project “Nano-Engineered Aluminosilicate Cementitious Materials” (NEASCMs) is designed for training the fellow by preparing low-carbon cementitious binders for sustainable construction and solidification/stabilization, S/S. Effects of nanoengineering on the regulation of the hydration and hardening processes of aluminosilicate-based cementitious binders for sustainable constructions, as well as its roles on the solidification/stabilization of aluminosilicate-based grains/wastes for environmental protection will be explored. Nanoengineering will be utilized for preparing low-carbon cementitious materials containing of different sources of Aluminosilicates, Carbonates and Sulfates (ACS) binders for sustainable construction. The hydration kinetics and performance of ACS binders will be tailored through the optimization of a combination of cement and minor ions (such as Mg, Fe, Cl). The mechanical properties and durability will be systematically studied for evaluation of performance. Secondly, effects of nanoengineering on S/S of typical aluminosilicate-based grains/wastes for environmental protection will be investigated. Solidification/stabilization using nanoengineered aluminosilicates will be studied and modelled thermodynamically. Cases such as solidification/stabilization of soil/construction wastes, mining wastes will be researched, and the environment features, such as the solidification capability, the leachability of the wastes will be investigated through mechanical testing and sequential extraction procedures (SEP), etc. Life-cycle assessment (LCA) will be used for a comprehensive understanding of the sustainability of the production and utilization of the new binders, baselined against Portland cement by taking the transportation, production, usage, and recycling stages into consideration. This project will shed a light on the preparation of low-carbon cementitious binders featuring great intellectual merits and broad engineering implications.