auto_awesome_motion View all 15 versions
organization

UGA

Grenoble Alpes University
Country: France
Funder (2)
Top 100 values are shown in the filters
Results number
arrow_drop_down
285 Projects, page 1 of 57
  • Funder: EC Project Code: 320939
    Partners: UGA
  • Open Access mandate for Publications and Research data
    Funder: EC Project Code: 893981
    Overall Budget: 196,708 EURFunder Contribution: 196,708 EUR
    Partners: UGA

    Pietro Mascheroni received his training in applied mathematics and mechanics in Italy and has carried out his research in the United States and in Germany. His work lies at the interface between applied mathematics and biology and has been published in prominent journals of the field. He is requesting funding for two years to work with Giovanni Cappello and join his group at LIPhy Grenoble, France. The scientific aim of the project is to improve the understanding of macrophage response to external cues, with the final goal of drawing new insights into the mechanisms of action of immunotherapies. The action will investigate the influence of chemical and mechanical signals on macrophage migration, analyzing their respective importance in determining cell behavior. Taking advantage of the host laboratory’s expertise and facilities, dynamic light scattering will be employed to monitor macrophage migration in 3D scaffolds and tumor aggregates. Macrophages will be stimulated by using different growth factors and chemokines, under variable oxygen and glucose culturing conditions. Mechanical stress will be applied using microfluidic tools and exploiting the osmotic action of Dextran on the extracellular matrix. Relying on the applicant’s expertise, theoretical models based on the active gel theory will be developed to assist the understanding of experimental results. Throughout the project the medical implications of the research will be considered, by taking advantage of collaborations with clinicians of partner institutions. The training program of the action is exhaustive and will allow the researcher to grow as a world-class leader in this field, which is fundamental in healthcare for the benefit of society. He will develop a unique blend of knowledge and expertise, allowing him to communicate and work with applied mathematicians, biomedical scientists and clinicians in industry, health services and academia.

  • Open Access mandate for Publications and Research data
    Funder: EC Project Code: 866001
    Overall Budget: 2,744,120 EURFunder Contribution: 2,744,120 EUR
    Partners: UGA

    This proposal’s objective is to mature two novel technological developments to push the limits of high-contrast imaging at high-spectral resolution with the near-future extremely large telescope (ELT). I will replicate in the laboratory the observing conditions of the ELT, and the expected spectra of a variety of planets and stars using tunable lasers. First, the high-contrast imaging system of HARMONI will be emulated to produce realistic datacubes onto which post-processing algorithms will be applied to extract as best as possible the planet signal to prepare for the real observations in 2025, which will be key to understand how planets form. I will then develop two complementary technologies. The first one is a novel type of spectrometer specifically designed to characterize an exoplanet at a high spectral resolution with a high throughput, and it will be tested on sky by being coupled to state-of-the-art direct imaging instruments (KPIC & SPHERE) both to validate this concept and to provide the highest resolution spectra of young giant planets ever obtained. A very innovative variation of this spectrometer will turn it into an integral field spectrograph with a FoV perfectly suited for the characterization of planets in the habitable zone of nearby M-dwarves. The second one is an adaptive coronagraph based on an achromatic amplitude control system, which, coupled with an adaptive optics system, will maximize the SNR of the planet by creating contrast only where it is required, in spite of ever-changing amplitude and phase aberrations due to the ELT and its instruments. These technologies will be combined together on the ELT testbench to test its ultimate capability, and lead a consistent proposition for a dedicated ELT instrument design to characterize faint planets in the HZ of nearby stars, and assess the habitability.

  • Funder: ANR Project Code: ANR-20-SFRI-0007
    Funder Contribution: 17,000,000 EUR
    Partners: UGA
  • Funder: EC Project Code: 291073
    Partners: UGA