Powered by OpenAIRE graph
Found an issue? Give us feedback

RAS

Russian Academy of Sciences
Country: Russian Federation
Funder (2)
Top 100 values are shown in the filters
Results number
arrow_drop_down
18 Projects, page 1 of 4
  • Funder: UKRI Project Code: NE/S008276/1
    Funder Contribution: 76,540 GBP

    One of the regions where current global warming is most pronounced is Siberia and the Russian Far East (SRFE). Inconveniently, this is also one of the regions with least coverage of climate records in international databases. As a consequence, it is extremely difficult to analyse and understand the spatial and temporal variations of climate change in SRFE that can provide context for past changes and current warming trajectories, and data are inadequate for syntheses that can aid evaluation of simulations of past climate-an important way to assess how well models perform at projecting the future, whether it be the impact on communities and ecosystems of forest fires or the fate of carbon currently stored in soils and peatlands. The lack of records from SRFE partly reflects that there are few well established, multi-year international collaborations between Russian institutes and international partners. While scientists at Russian institutes have access to large datasets and field sites and have high-quality staff conducting laboratory analyses, they often have less access to the latest analytical approaches and data quality control protocols-or indeed the language fluency currently required for high-impact international publications and data syntheses. This can generate an imbalance of influence within projects and lead to one-sided and/or short-term scientific interactions that do not have long-term direction and coherence. We will address both the science and science culture issues via a network of researchers from the UK and six institutes of the Russian Academy of Sciences in SRFE. Partners in this network have already expressed a strong interest to work together and pool resources to (1) synthesise existing data, (2) learn new methods, and (3) together create new high-quality records of climate and environmental change in this and future research projects. Our network is called DIMA ("Developing Innovative Multi-proxy Analysis"), because we will use multiple new approaches to get climate information from sediment records (proxies) to reconstruct climate change. Our partnership-building and collaboration have several aims. First an extant dataset that described past vegetational change, which has not yet reached an international audience, will be analysed by the DIMA groups to create value-added features (e.g., data formulated for climate-vegetation modelling exercises) prior to publication. Second, we will collect samples to apply a method new to this region for reconstructing past temperatures from insect remains in lake sediments; this will be underpinned by UK-based training of Russian collaborators in the use of the latest laboratory and statistical procedures during a month-long visit of three colleagues from SRFE to the UK. It will involve collecting modern reference samples and generating a high-quality long temperature record from western Siberia as proof-of-concept for an expanded programme. Project leader van Hardenbroek is a specialist in this field. The two selected Russian Project Partners have considerable experience in organising field campaigns and laboratory analysis and will provide the necessary personnel, support and infrastructure. The new data and the experience gained during this project will place the DIMA team in a competitive position to apply for larger collaborative project; the highly motivated team will be geared up to generate long-term climate records across SRFE, produce a high-quality regional temperature synthesis, and develop collaborations with, for example, groups using data compilations to explore climate-vegetation model performance (co-I Edwards current collaboration). This proposal addresses the UK government's expressed need for developing and maintaining strong science ties with key countries, including Russia and strengthening international collaborations outside Europe post-Brexit.

    more_vert
  • Funder: UKRI Project Code: NE/R000670/1
    Funder Contribution: 419,315 GBP

    Our proposal unites a multidisciplinary team of researchers from mineralogy, palaeontology, deep-sea biology and genetics to provide an integrated picture of when and how some of the most remarkable environments on our planet were colonised by highly-specialised animals, and inform modern deep-sea conservation challenges. The discovery of hydrothermal vents in the deep sea during the late 1970s revolutionised our understanding of the limits of life on our planet. These explorations uncovered incredibly lush ecosystems supported by chemosynthesis, a carbon-fixation process previously deemed insignificant, and faunas with many novel adaptations to surviving in this dark habitat characterised by the ejection of extremely hot, toxic fluids from the seafloor. Despite their seemingly-hostile conditions, we now know that animals have thrived around vents for at least 440 million years, and that diverse taxonomic lineages have continually adapted to this environment over the course of Earth's history. Surprisingly, rather than functioning as evolutionary refuges in which ancient relict faunas have survived in isolation from large-scale environmental changes, evolution at vents appears to have occurred numerous times. This suggests that vents have an intriguing role as incubators of evolutionary novelty, their importance in evolution also highlighted by theories that life itself originated within this setting. Since their initial exploration, significant milestones have been achieved in surveying these ecosystems and in understanding the intimate interactions that modern vent faunas have with the microorganisms that support them. However, answers to fundamental questions of when animals first transitioned to occupy this environment, the processes driving the adaptation of new vent animals and the biological basis for vent colonisation are still lacking. A grasp of these principles is vitally important to understanding how animals adapt to unstable temperature regimes, and of how large-scale environmental changes affect the deep sea, the world's largest ecosystem. This is particularly pertinent today as the deep sea is increasingly affected by human activities, but how it responds to impacts such as climate change and mining operations is unknown. To gain vital evolutionary insights into the colonisation of hydrothermal vents, both in the modern ocean and throughout Earth history, we propose a comprehensive research programme guided by four hypotheses: H1) animals colonised hydrothermal vent environments soon after the Cambrian Explosion of life; H2) new vent habitat formation has repeatedly driven vent animal evolution over time; H3) ancient vent animals exhibited similar associations with microorganisms to modern vent animals to survive within harsh vent environments; and H4) adaptation to vent environmental regimes is evolutionarily rapid. We will assemble primary data for this project from field studies of key geological localities in Norway, Canada and Tasmania, which likely contain the oldest known bone-fide vent animals, and the southern Ural Mountains where a remarkable 100 million year fossil history of ancient vents is preserved. Together, these regions contain some of the best-preserved ancient hydrothermal vent deposits in the world. Collected fossil samples will be subjected to new detailed palaeontological investigations, and high resolution sulphur isotopic analyses. To investigate recent and ongoing adaptation at modern hydrothermal vents we will work on samples of traditional non-vent fauna that we can observe colonising new hydrothermal systems, using advanced DNA techniques.

    visibility114
    visibilityviews114
    downloaddownloads147
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/V055593/1
    Funder Contribution: 930,843 GBP

    Nuclear magnetic resonance (NMR) is one of the most versatile forms of spectroscopy in the physical sciences, with applications spanning the full range from fundamental physics, quantum theory, chemistry, materials science and biochemistry to structural biology and clinical applications (especially in the form of magnetic resonance imaging, MRI). In most cases, NMR spectroscopy employs the strongest possible magnetic field, since this usually generates the strongest signals with high resolution of the different chemical sites of the atomic nuclei. Nevertheless, there are circumstances in which it is desirable to perform NMR over a range of magnetic fields, including the ultralow field regime, in which magnetic shielding is used to achieve very small magnetic fields over three orders of magnitude smaller than the earth's magnetic field. NMR in this ultralow field regime is very special in several ways. Firstly, the information content of the NMR spectrum is determined not by chemical shifts but by spin-spin couplings. Secondly, the line width in this regime is not governed by the magnetic field inhomogeneity, as in ordinary NMR, but by dissipation effects (relaxation). Extremely narrow linewidths (millihertz) are often achieved. Thirdly, the different species of nuclear spins are tightly coupled in the ultralow magnetic field regime, giving rise to the special phenomena such as heteronuclear long-lived states, which do not exist in larger magnetic fields. Fourthly, optical magnetometry techniques may be used to detect the magnetism of the nuclear spins, as opposed to electromagnetic induction, which is used in conventional NMR. The zero-to-ultralow field (ZULF) regime therefore offers a special form of NMR which has a quite different nature to ordinary NMR spectroscopy, and whose features and possibilities are only just starting to be explored. There is currently no equipment in the UK which allows observation of NMR signals in the ultralow magnetic field regime. The proposed research involves the construction of a device which shuttles a sample in a rapid and highly controlled way between the high-field region of an ordinary NMR magnet and a magnetically shielded chamber, equipped with optical magnetometers for the detection of the NMR signal in the ZULF regime. This equipment will allow us to explore the spin dynamics in the ZULF regime with great precision and also exploit the ZULF regime as part of a high-field NMR procedure. This allows numerous multidimensional NMR experiments in which the advantages of both regimes may be combined. In addition the equipment allows the possibility to explore NMR relaxation over a very wide range of magnetic fields, allowing the probing of molecular motion over an extremely wide range of timescales. In addition the equipment will permit the development of advanced methodology for manipulating nuclear spin systems in the ZULF regime, such as the development of "ZULF decoupling" sequences which cause the system to behave as if spin-spin couplings between nuclei of different isotopic types are suppressed. This will make the ZULF NMR signals narrower, more informative, and easier to interpret. The proposed equipment will be world-unique and will be made available to the UK scientific community as a research facility. A workshop and training course will be provided during the final stages of the research project in order to facilitate the transfer of knowledge on this special form of NMR to UK scientists.

    visibility87
    visibilityviews87
    downloaddownloads94
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: EP/R024057/1
    Funder Contribution: 717,567 GBP

    The Fibre Optical Parametric Amplifier (FOPA) has been investigated by many research groups over the preceding thirty-five years as a potential "holy grail" of optical amplification, but has yet to evolve outside of the laboratory. The tantalising prospect of significantly increasing fibre capacity within optical systems by simply and directly employing FOPAs, each with gain bandwidth far exceeding that of the ubiquitous EDFA, has always been historically somewhat offset by a range of challenging physical barriers. Chief amongst these is the innate polarisation sensitivity of the parametric amplification process. This demands that close alignment must be maintained between the polarisation state of an incoming signal and an optical parametric pump which supplies energy to the signal via a nonlinear medium. In a DWDM system, this requirement scales extremely problematically - multiple signals of differing wavelength and in random states of polarisation (often with data carried on both orthogonal modes), must each correlate polarisation-wise with the pump or pumps to receive gain. We believe we have uncovered a ground-breaking new architecture for the FOPA which will ultimately effectively eradicate this significant hurdle, and forms the basis for this proposal's research direction. Other FOPA performance issues must also be overcome. For example, the transfer of intensity noise from the pump to the signals, and the unwanted generation of nonlinear crosstalk within the FOPA via signal-signal interactions are certainly drags on the performance ultimately achievable and will require significant investigation to minimise their effects. However, we do not consider these latter challenges to be such a considerable brick-wall against real-world operation as 'the polarisation question'. FPA-ROCS, is a focused research programme which will provide the required breakthrough to transition the FOPA from problematic laboratory experiment to an amplifier with real potential to impact across the optical communications world. This key advance will be based on our recent first experiments of an innovative FOPA design based on what we are calling the Half Pass Nonlinear Optical Loop or HPL NOL as shown in. We have recently demonstrated the world's first amplification of polarisation-multiplexed DWDM signals using this architecture , and believe it solves several of the large issues highlighted above, most notably offering polarisation independent black-box gain together with exceptional potential for significantly expanded bandwidth beyond the 20nm so far demonstrated. This potential has been outlined by separate characterisation studies undertaken by our team which demonstrated a single polarisation gain bandwidth of >110nm (i.e. 3x greater than that of the EDFA) with a gain variation across the band of only 1dB . We envisage using the HPL NOL to supply gain in regions of the fibre transmission spectrum which are currently untapped, such as at 1300nm (O-band) or 1500nm (S-band). By exploiting new bands in this way, together with considerably wider gain bandwidth per band, the capacity increase offered by FPA-ROCS will be extremely large (>500% current capability) and thus industry and, perhaps, world changing. The technology will be able to operate in parallel with existing optical communications infrastructure due to the transparency of the HPL-NOL outside its gain region (a feature not present in doped fibre amplifiers), enabling co-deployment with field-deployed EDFAs. This will enable a low-cost future upgrade path for network operators without the expensive and environmentally-unfriendly need to lay new fibre as capacity limits are approached. We envisage massively increased data throughputs from our radical redesign of the optical amplifier, allowing fibre systems to be future proofed to some degree at a UK-wide level and beyond.

    visibility13
    visibilityviews13
    downloaddownloads29
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: ES/V017608/1
    Funder Contribution: 750,784 GBP

    Recent years have seen increased global policy concern with the management and governance of fresh-water resources. From a humanitarian perspective, the United Nations aims to tackle 'global challenges' associated with water access. From the perspective of international law, a growing body of multilateral agreements aims to ensure countries have fair access to trans-border rivers. Against this policy background, the social sciences pay increasing attention to fresh water as a scarce global resource requiring careful management. Unlike other economically significant resources like coal and oil, water is regarded as supremely important as it is essential for the maintenance and reproduction of life on earth. This project aims to explore the politics of managing, and planning the management of, trans-border rivers on water resource frontiers. In such contexts the actions of 'upstream' riparian states affect those in 'downstream' ones, and so often have strategically, politically and economically significant consequences. In particular, we aim to understand how these politics of management work in contexts where multilateral legal agreements on trans-border river use are eschewed. These aims frame and support a range of objectives. We seek to understand contexts in which participation in multilateral agreements on equitable access to trans-border rivers are unappealing. We aim to understand how, in the absence of such agreements, the management of such rivers works - or does not work - in practice. And we propose examining the frictions caused by the intersection of different national laws in relation to trans-border rivers. The river Selenga, which runs from Mongolia into Russia's Lake Baikal, provides an exemplary case study. The Selenga is divided between two countries (Mongolia and Russia), and is the object of extensive Chinese economic and political interest. Unhindered by multilateral agreements, each country harbours different national interests in relation to the Selenga. Mongolia strives for energy security by planning hydroelectricity plants on the Selenga and its tributaries. Russia aims to preserve the unique ecology and cultural significance of Lake Baikal by protecting its water inflow from the Selenga. China seeks to fuel economic growth in its arid northwest and central agricultural provinces with water abstracted from the river. Legal studies thoroughly examine trans-border river disputes, and political science documents international relations in Inner Asian regions. But little is known about the day-to-day realities of managing the Selenga and their wider political, economic and cultural implications for this geopolitically sensitive region. Using the Selenga as an example, this project draws on the methods and theories of Social Anthropology to provide a critically important means for understanding trans-border river management. Anthropological approaches are inherently suitable for examining the social relations through which management plans and proposals are conceptualised, implemented and worked through in everyday life. Six field-sites spanning Mongolia, Russia and China have been selected for their importance in generating data to support project aims and objectives. Academic beneficiaries include UK and global scholars from disciplines including Social Anthropology, Law and International Relations. They will benefit from new perspectives on resource nationalism, sovereignty, and infrastructure generated by the project. Other beneficiaries include regional NGOs advocating for sustainable water resource management policies, policy units interested in trans-border river governance and the reach of international law, and residents of the Selenga river basin and other areas connected to its management.

    more_vert
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.