auto_awesome_motion View all 1 versions
organization

Inst for Baltic Sea Research Warnemunde

Country: Germany
2 Projects, page 1 of 1
  • Funder: UKRI Project Code: NE/I028947/1
    Funder Contribution: 472,484 GBP
    Partners: Hadley Centre, DFO, Inst for Baltic Sea Research Warnemunde, NOC, UAF, BU, Woods Hole Oceanographic Inst, University of London

    Look at a map of the world and find the Shetland Islands. Follow the 60 degrees north latitude circle eastwards. You pass through St. Petersburg, the Ural Mountains, Siberia, the Bering Sea, Alaska, northern Canada, the southern tip of Greenland, then back to the Shetlands. All these places are cold, harsh environments, particularly in winter, except the Shetlands, which is wet and windy but quite mild all year. This is because in the UK we benefit from heat brought northwards by the Atlantic Ocean in a current called the Conveyor Belt. This current is driven by surface water being made to sink by the extreme cold in and around the Arctic. It returns southwards through the Atlantic at great depths. Scientists think it is possible that the Conveyor Belt could slow down or stop, and if it did, the UK would get much colder. We know the planet has been warming for the last century or more, and we think this is due to the Greenhouse Effect. Burning fossil fuels puts a lot of carbon dioxide into the atmosphere, which stops heat from leaving the Earth, like the glass in a greenhouse. In a warming world, ice melts faster, and there is a lot of ice on the Earth: ice caps on Greenland and Antarctica, sea ice in the Arctic and Antarctic Oceans, glaciers in high mountains. And we know that the Arctic is the fastest-warming part of the planet. This causes extra amounts of fresh water to flow into the oceans. Now this fresh water can affect the Conveyor Belt by acting like a lid of water too light to sink, so the Conveyor Belt stops. What is the chance of this happening? We do not know, because there is much we do not understand about how the Arctic Ocean works. You need a powerful icebreaker to get into the Arctic Ocean, and that's only really possible in the summer, because in winter the sea ice thickens and the weather is bad. Scientists all over the world agree that the Arctic Ocean is important because it contains a lot of freshwater, which is why, although it is difficult to make measurements in the Arctic, the UK's Natural Environment Research Council has decided to fund a programme of scientific research in the Arctic. We want to be able to make better predictions of how the Arctic climate will change during the 21st century, so this project will help improve our ability to make these predictions. We will do this by improving the way that computer models of the Earth's climate represent the Arctic. We are going to treat the Arctic Ocean as a box, with a top, a bottom, sides and an interior, and we're going to examine all these parts of the box using measurements from space, from ships, from instruments moored to the sea bed, and from robotic sensors attached to drifting sea ice. We'll use all these measurements together to improve the scientific equations within the computer models, and then we'll run the models into the future to create better predictions not just of the Arctic, but of how changes in the Arctic might influence UK, European and global climate. With better predictions, we can make better plans for the future.

  • Funder: UKRI Project Code: NE/H017348/1
    Funder Contribution: 1,013,550 GBP
    Partners: Alfred Wegener Inst for Polar & Marine R, University of Liège, CAU, Inst for Baltic Sea Research Warnemunde, CEREGE, BCCR, University of Southampton, Marine Research Institution, Institute for Oceanography Kiel, Dalhousie University...

    The burning of fossil fuels is releasing vast quantities of extra carbon dioxide to the Earth's atmosphere. Much of this stays in the atmosphere, raising CO2 levels, but much also leaves the atmosphere after a time, either to become sequestered in trees and plants, or else to become absorbed in the oceans. CO2 staying in the atmosphere is a greenhouse gas, causing global warming; CO2 entering the sea makes it more acidic, and the ongoing acidification of seawater is seen in observational records at various sites where time-series data are collected. The changing chemistry of seawater due to ocean acidification is mostly well understood and not subject to debate. What is much less well known is the impact that the changing chemistry will have on marine organisms and ecosystems, on biogeochemical cycling in the sea, and on how the sea interacts with the atmosphere to influence climate. We will look to investigate these questions in terms of how the surface waters of the world's oceans, and the life within, will respond to ocean acidification. Most of what we know about biological impacts, and the source of the current concern about the impact on marine life, comes from experimental studies in which individual organisms (e.g. single corals) or mono-specific populations (e.g. plankton cultures) have been subjected to elevated CO2 (and the associated lower pH) in laboratory experiments. These laboratory experiments have the advantage of being performed under controlled conditions in which everything can be kept constant except for changes to CO2. So if a response is observed, then the cause is clear. However, there are also limitations to laboratory studies. For instance, organisms have no time to adapt evolutionarily, and there is no possibility of shifts in species composition away from more sensitive forms towards more acid-tolerant forms, as might be expected to occur in nature. Another shortcoming is the absence of food-web complexity in most experiments, and therefore the absence of competition, predation, and other interactions that determine the viability of organisms in the natural environment. We seek to advance the study of ocean acidification by collecting more observations of naturally-occurring ecosystems in places where the chemistry of seawater is naturally more acidic, and/or where it naturally holds more carbon,as well as locations which are not so acidic, and/or hold more usual amounts of carbon. By contrasting the two sets of observations, we will gain an improved understanding of how acidification affects organisms living in their natural environment, after assemblage reassortments and evolutionary adaptation have had time to play out. Most of the planned work will be carried out on 3 cruises to places with strong gradients in seawater carbon and pH: to the Arctic Ocean, around the British Isles, and to the Southern Ocean. As well a making observations we will also conduct a large number of experiments, in which we will bring volumes of natural seawater from the ocean surface into containers on the deck of the ship, together with whatever life is contained within, and there subject them to higher CO2 and other stressors. We will monitor the changes that take place to these natural plankton communities (including to biogeochemical and climate-related processes) as the seawater is made more acidic. A major strength of such studies is the inclusion of natural environmental variability and complexity that is difficult or impossible to capture in laboratory experiments. Thus, the responses measured during these experiments on the naturally-occurring community may represent more accurately the future response of the surface ocean to ocean acidification. In order to carry out this experimental/observational work programme we have assembled a strong UK-wide team with an extensive track record of successfully carrying out sea-going scientificresearch projects of this type.