auto_awesome_motion View all 1 versions
organization

Bigelow Lab for Ocean Sciences

Country: United States
4 Projects, page 1 of 1
  • Funder: UKRI Project Code: NE/N001079/1
    Funder Contribution: 594,112 GBP
    Partners: Woods Hole Oceanographic Inst, University of Liverpool, Bigelow Lab for Ocean Sciences, LSCE-Orme

    Phytoplankton are microscopic plants that live in the sunlit surface ocean. Phytoplankton fix carbon dioxide and use essential nutrients such as nitrate, phosphate and trace metals, such as zinc and iron, via photosynthesis, to produce organic matter. In doing so, marine phytoplankton provide energy to higher trophic levels, such as fish and marine mammals, as well as contribute to the distribution of carbon dioxide between the atmosphere and ocean. Over 40% of the ocean consists of vast remote ecosystems known as subtropical gyres, which are typified by warm surface waters and extremely low nutrient concentrations. Indeed, the activity of phytoplankton is often suppressed by the lack of nutrients. However, due to their vast areal extent, subtropical gyres have a significant impact on the way the ocean cycles carbon and nutrients. This means that any future changes in the activity of subtropical systems will have important impacts on marine resources and how the ocean interacts with the climate and the Earth System. Our present understanding of how phytoplankton activity in the gyres will change in the future in response to climate change is that there will be an overall reduction in the supply of all essential nutrients due to changes in ocean circulation, causing a decline in phytoplankton activity. However, this simplified view ignores both the natural and anthropogenic addition of nitrogen to surface waters, which enhance stocks of nitrate relative to phosphate. In the subtropical North Atlantic, the natural addition of nitrogen via nitrogen fixation causes phosphate to limit phytoplankton growth. In the subtropical North Pacific, recent observations show that the addition of anthropogenic nitrogen via combustion and fertilisers are causing the North Pacific to be driven from a nitrate to a phosphate limited ecosystem. The on-going addition of nitrogen to the subtropical gyre systems from continued anthropogenic sources implies that phosphate scarcity will become an increasing problem over the coming decades. At present, phytoplankton are thought to adapt to phosphate scarcity by producing enzymes that allow them to acquire phosphate from the more abundant pools of dissolved organic phosphorus (DOP). As such, the oceanographic community typically assumes phosphate limitation of phytoplankton activity to be unimportant. In contrast to this prevailing view, our team have found that the ability of phytoplankton to acquire phosphate from DOP can be regulated by the supply of zinc. Zinc is a trace metal that is essential for phytoplankton, but has never before been shown to play such a fundamental role in controlling phytoplankton growth. Much attention has been placed on how the trace metal iron interacts with nitrate and phosphate in the subtropics, but there is now an explicit need to better understand the role of zinc and its interaction with other nutrient cycles and phytoplankton. Our initial work suggests that by controlling the impact of phosphate scarcity, zinc may be the ultimate arbiter of how subtropical gyre ecosystems evolve. Our goal is to combine a field study to the subtropical gyre North Atlantic and use novel techniques to measure how zinc and phosphorus control biological activity. We will then use the latest modelling tools to explore our observations further over decadal timescales and other ocean basins. The North Atlantic gyre is typified by low phosphate and zinc and is therefore an ideal natural laboratory in which to understand how zinc availability may shape future subtropical gyre ecosystems. Our ambitious proposal has the potential to produce a step change in our understanding of how subtropical gyre ecosystems respond to ongoing climate change. Our team combines world leaders in the observation and modelling of nutrients and phytoplankton biological activity and is therefore uniquely placed to deliver this crucial scientific insight.

  • Funder: UKRI Project Code: NE/V012991/1
    Funder Contribution: 624,675 GBP
    Partners: University of Bergen, AU, UNIS, Aberystwyth University, Bigelow Lab for Ocean Sciences

    Life thrives even on the sun-kissed surfaces of glaciers. But does life on ice survive in the darkened depths of Arctic winters and sediments? We know glacier surfaces are home to active microbial ecosystems. We know that in summer these photosynthesis-driven ecosystems fix carbon and darken ice as solar energy is converted to dark organic carbon. As a result, ecosystems on glaciers influence the fate of glaciers in our warming world. Until now, biogeochemists have assumed ecosystems on glaciers are only active when nourished with sunlight and nutrients in liquid meltwater in the brief melting season of summer. This constraint has framed our understanding of glacier surface ecology to the extent that the absence of evidence for active microbial processes on glaciers in winter has been considered evidence of their absence. But we now have year-round data which robustly challenges the assumption life is only active in summer. Our pilot data also reveals methane producers for the first time on ice surfaces. This project therefore tests the simple but powerful idea that glacier surface habitats are perennially active, resulting in unexpected sources of greenhouse gases. Our project proposes to address three interlinked major knowledge gaps in our understanding of glacier ecology. Firstly, we need to know what lives through the winter, secondly, we need to know what lives in thick accumulations of sediments on ice, and finally we need to know how the microbial life forms surviving through darkness influence carbon and nutrient cycles on glaciers. Our project's overall hypothesis is that glacier surfaces host light-independent microbial metabolic activities, thus allowing microbial activities in unexpected conditions with neglected contributions to nutrient cycles and greenhouse gas production. In this project we will go the High Arctic glaciers of Svalbard in every season to compare their microbial communities in the depths of polar night, the cold of the winter, the spring thaw and the height of summer. At each glacier we will collect samples for molecular analyses and measure microbial activities. We will conduct experiments to reveal how the microbes survive in these conditions, and how they interact with the carbon and nutrient cycles of the glaciers. We combine our fieldwork with carefully-controlled incubation experiments in cold labs in the UK, US and Norway. By doing this, we will have a clear picture for the first time of how life survives all seasons on Arctic glaciers and what this means for the ecology of Arctic glaciers as they face an uncertain future in the warming Arctic.

  • Funder: UKRI Project Code: NE/S013547/1
    Funder Contribution: 201,003 GBP
    Partners: University of Liverpool, FSC, BIOS, ODU, Bigelow Lab for Ocean Sciences

    Iron is an essential nutrient for the growth of phytoplankton in the oceans. As such, iron plays key roles in regulating marine primary production and the cycling of carbon. It is thus important that models of ocean biology and chemistry consider iron, in order to explore past, present and future variations in marine productivity and the role of the ocean in the global carbon cycle. In this joint project involving researchers in the U.S. and the U.K., supported by both NSF and the Natural Environment Research Council (U.K.), field data from the Bermuda Atlantic Time-series Study (BATS) region will be combined with an established, state-of-the-art ocean biogeochemical model. By leveraging the known seasonal-scale physical, chemical and biological changes in the BATS region, the oceanographic context provided by the BATS core data, and an existing model of the regional physical circulation, the proposed study will yield process-related information that is of general applicability to the open ocean. In particular, the proposed research will focus on understanding the atmospheric input, biological uptake, regeneration and scavenging removal of dissolved iron in the oceanic water column, which have emerged as major uncertainties in the ocean iron cycle. The project will include significant educational and training contributions at the K-12, undergraduate, graduate and postdoctoral levels, as well as public outreach efforts that aim to explain the research and its importance. The ability of ocean models to simulate iron remains crude, owing to an insufficient understanding of the mechanisms that drive variability in dissolved iron, particularly the involvement of iron-binding ligands, colloids and particles in the surface input, biological uptake, regeneration and scavenging of dissolved iron in the upper ocean. Basin-scale data produced by the GEOTRACES program provide an important resource for testing and improving models and, by extension, our mechanistic understanding of the ocean iron cycle. However such data provide only quasi-synoptic 'snapshots', which limits their utility in isolating and identifying the processes that control dissolved iron in the upper ocean. The proposed research aims to provide mechanistic insight into these governing processes by combining time-series data from the BATS region with numerical modeling experiments. Specifically, seasonally resolved data on the vertical (upper 2,000 meters) and lateral (tens of kilometers) distributions of particulate, dissolved, colloidal, soluble and ligand-bound iron species will be obtained from the chemical analysis of water column samples collected during five cruises, spanning a full annual cycle, shared with the monthly BATS program cruises. These data, along with ancillary data from the BATS program, will be used to test and inform numerical modeling experiments, and thus derive an improved understanding of the mechanisms that control the distribution and dynamics of dissolved iron in the oceanic water column.

  • Funder: UKRI Project Code: NE/H017348/1
    Funder Contribution: 1,013,550 GBP
    Partners: Alfred Wegener Inst for Polar & Marine R, University of Liège, CAU, Inst for Baltic Sea Research Warnemunde, CEREGE, BCCR, University of Southampton, Marine Research Institution, Institute for Oceanography Kiel, Dalhousie University...

    The burning of fossil fuels is releasing vast quantities of extra carbon dioxide to the Earth's atmosphere. Much of this stays in the atmosphere, raising CO2 levels, but much also leaves the atmosphere after a time, either to become sequestered in trees and plants, or else to become absorbed in the oceans. CO2 staying in the atmosphere is a greenhouse gas, causing global warming; CO2 entering the sea makes it more acidic, and the ongoing acidification of seawater is seen in observational records at various sites where time-series data are collected. The changing chemistry of seawater due to ocean acidification is mostly well understood and not subject to debate. What is much less well known is the impact that the changing chemistry will have on marine organisms and ecosystems, on biogeochemical cycling in the sea, and on how the sea interacts with the atmosphere to influence climate. We will look to investigate these questions in terms of how the surface waters of the world's oceans, and the life within, will respond to ocean acidification. Most of what we know about biological impacts, and the source of the current concern about the impact on marine life, comes from experimental studies in which individual organisms (e.g. single corals) or mono-specific populations (e.g. plankton cultures) have been subjected to elevated CO2 (and the associated lower pH) in laboratory experiments. These laboratory experiments have the advantage of being performed under controlled conditions in which everything can be kept constant except for changes to CO2. So if a response is observed, then the cause is clear. However, there are also limitations to laboratory studies. For instance, organisms have no time to adapt evolutionarily, and there is no possibility of shifts in species composition away from more sensitive forms towards more acid-tolerant forms, as might be expected to occur in nature. Another shortcoming is the absence of food-web complexity in most experiments, and therefore the absence of competition, predation, and other interactions that determine the viability of organisms in the natural environment. We seek to advance the study of ocean acidification by collecting more observations of naturally-occurring ecosystems in places where the chemistry of seawater is naturally more acidic, and/or where it naturally holds more carbon,as well as locations which are not so acidic, and/or hold more usual amounts of carbon. By contrasting the two sets of observations, we will gain an improved understanding of how acidification affects organisms living in their natural environment, after assemblage reassortments and evolutionary adaptation have had time to play out. Most of the planned work will be carried out on 3 cruises to places with strong gradients in seawater carbon and pH: to the Arctic Ocean, around the British Isles, and to the Southern Ocean. As well a making observations we will also conduct a large number of experiments, in which we will bring volumes of natural seawater from the ocean surface into containers on the deck of the ship, together with whatever life is contained within, and there subject them to higher CO2 and other stressors. We will monitor the changes that take place to these natural plankton communities (including to biogeochemical and climate-related processes) as the seawater is made more acidic. A major strength of such studies is the inclusion of natural environmental variability and complexity that is difficult or impossible to capture in laboratory experiments. Thus, the responses measured during these experiments on the naturally-occurring community may represent more accurately the future response of the surface ocean to ocean acidification. In order to carry out this experimental/observational work programme we have assembled a strong UK-wide team with an extensive track record of successfully carrying out sea-going scientificresearch projects of this type.