auto_awesome_motion View all 4 versions
organization

BALFOUR BEATTY RAIL

BALFOUR BEATTY RAIL TECHNOLOGIES LIMITED
Country: United Kingdom
Funder (2)
Top 100 values are shown in the filters
Results number
arrow_drop_down
28 Projects, page 1 of 6
  • Funder: UKRI Project Code: 101211
    Funder Contribution: 306,444 GBP
    Partners: BALFOUR BEATTY RAIL

    RailSAFT aims to develop an affordable and reliable Non-Destructive Testing (NDT), automated ultrasonic inspection technique for high manganese, wear-resistant steel rail crossover points (Frogs). These are commonly used on the UK and global rail networks and are susceptible to in-service cracking due to high impact loads from rolling stock. The early detection of cracks at safety critical locations in rail is vital because they can propagate in service and may ultimately lead to failure with potentially catastrophic consequences. Flaws detected at an early stage in their growth cycle can be monitored/ assessed and repaired before risk of failure. Modelling & simulation methods will be used to develop algorithms for the precise control of the ultrasonic beam generated by phased array probes that are to be developed. Synthetic Aperture Focusing (SAFT) together with advanced signal processing will enhance Signal Noise Ratios thus improving defect detection in cast Frog rail sections.

  • Funder: UKRI Project Code: EP/D505488/1
    Funder Contribution: 238,832 GBP
    Partners: Mott Macdonald (United Kingdom), Imperial College London, BALFOUR BEATTY RAIL

    The term blinding is used to describe the thin layer of unreinforced over-site concrete which is used to protect the base of excavations. Blinding is not generally seen or exploited as a beneficial structural element even though it clearly provides some temporary lateral support to the walls of cut and cover works until the base slab is constructed. This proposal stems from Powderham's pioneering work at Mott MacDonald, which shows that blinding struts can eliminate the need for temporary steel propping in cut and cover excavations. Mott MacDonald has used blinding struts in the construction of the Channel Tunnel cut and cover works, the Limehouse Link and the Heathrow Express cofferdam. The hallmark of these projects was the elimination of temporary steel propping from a series of deep excavations which paved the way for further time and cost saving schemes. It is important to note that in all these applications, the actual capacity of the blinding struts and the loads they were carrying were unknown. Therefore, a very conservative approach was adopted for the blinding struts which resulted in the struts being thicker than necessary with consequent cost and environmental implications. Research is required since many clients are unwilling to sanction the use of blinding struts because their performance has not been definitively established.The research will develop a numerical method for predicting the response of blinding struts in cut and cover excavations that is calibrated with data from laboratory tests and field data where possible. Predicting the failure loads of blinding struts is complex since the buckling load depends on factors including cracking, creep, shrinkage and the rates at which the lateral and transverse loadings are introduced into the slab relative to the development of concrete strength. This problem will be solved by carrying out a coupled analysis using both geotechnical and structural finite element programs. A simplified model for the structural response of the blinding strut will be used in the geotechnical analysis. This will enable strut loadings to be determined which will then be used in a refined structural analysis of the strut itself. The overall process will involve iteration, with the structural analysis refining the simplified strut model used in the geotechnical analysis, which in turn will provide improved estimates of the strut loading. This process, combined with the results from the laboratory testing, will lead to a proposed model for the non-linear behaviour of the blinding strut that can be adopted by others in their geotechnical analyses accounting for the specific site and construction conditions.The numerical analysis of the blinding strut will be carried out using the nonlinear structural analysis program ADAPTIC, developed by Izzuddin, which already provides all the necessary elements and material models for assessing the timedependent response of the blinding strut. The geotechnical analysis will be performed using the finite element program ICFEP developed by Potts. This program has been written specifically for geotechnical engineering and has been applied to a wide variety of soil-structure interaction problems. The geotechnical analysis will investigate the behaviour of an embedded cantilever wall with and without a single prop near its top. In both cases, a temporary blinding strut will be modelled at final excavation level. The construction sequence will be based on the procedures adopted at the Limehouse Link, Heathrow Express Cofferdam and Airside Road Tunnel constructions. Soil conditions will also be based on these sites with analyses conducted for excavations in predominantly London Clay and in the Lambeth Group. A series of 20 laboratory tests will be carried out on scale models of blinding slabs with variations in material properties, end conditions and lateral imperfections. The test results will be used to validate and refine the numerical analysis.

  • Funder: UKRI Project Code: EP/I014489/1
    Funder Contribution: 417,999 GBP
    Partners: University of Sheffield, UIC, Network Rail, BALFOUR BEATTY RAIL, ADEPT

    There are approximately 70,000 masonry arch bridge spans on the UK road and rail networks (approx. 1 million spans worldwide), the vast majority of which are now well beyond the 120 year life usually expected of bridges. Though masonry arch bridges are in general considered long-lived structures, large numbers are now showing signs of distress. However, the cost of replacing these bridges in the UK alone would run into tens of billions of pounds, and their aesthetic and heritage value is also significant. Unfortunately the methods currently used to assess their capacity are antiquated and/or over-simplistic, making the task of prioritising renewal or refurbishment schemes extremely difficult (the still widely used MEXE method of assessment, which dates back to the 1940s, has very limited predictive capability and offers little scope for future enhancement). Weathering, continually increasing traffic volumes and factors such as the increased frequency of flood events brought about by climate change (affecting bridges over water) only serve to exacerbate the situation. Furthermore, although the primary focus of recent research has been on prediction of structural failure (the `ultimate limit state'), prediction of the level of service load above which incremental damage occurs (the `permissible limit state') is now a key priority for infrastructure owners, who are under increasing pressure to provide transport networks which are resilient. However, a significant barrier to delivering this using existing tools is that current assessment codes prescribe a fixed ratio between the ultimate and permissible load carrying capacities, which, given the diverse range of bridges in the field, is inappropriate and can lead to highly imprecise bridge assessments, and in turn to major economic implications.The present situation stems from our limited understanding of the 'real-world' behaviour of masonry arch bridges, which typically contain soil fill material surrounding and interacting with the arch barrel when loading is applied, and where both working (cyclic) and ultimate loading regimes are important. Developing an improved understanding of such behaviour is the main focus of this project. To achieve this, highly instrumented soil-arch interaction tests will be undertaken, with low-friction, clear sided, medium and full-scale test chambers and state-of-the-art Particle Image Velocimetry (PIV) techniques used to ensure a comprehensive and high quality experimental data-set is obtained. Test variables will include loading type (quasi-static vs. cyclic), bridge type (road vs. railway), fill material type and the presence or otherwise of near-traffic surface strong / stiff layers. Numerical modelling techniques and novel `system identification' techniques will be employed to ensure the full experimentally obtained data-set is used when validating the models developed. Finally, the ultimate objective is to use the improved understanding obtained to develop more rational assessment tools for use by engineers.

  • Funder: UKRI Project Code: EP/I014357/1
    Funder Contribution: 562,691 GBP
    Partners: University of Salford, UIC, ADEPT, Network Rail, BALFOUR BEATTY RAIL

    There are approximately 70,000 masonry arch bridge spans on the UK road and rail networks (approx. 1 million spans worldwide), the vast majority of which are now well beyond the 120 year life usually expected of bridges. Though masonry arch bridges are in general considered long-lived structures, large numbers are now showing signs of distress. However, the cost of replacing these bridges in the UK alone would run into tens of billions of pounds, and their aesthetic and heritage value is also significant. Unfortunately the methods currently used to assess their capacity are antiquated and/or over-simplistic, making the task of prioritising renewal or refurbishment schemes extremely difficult (the still widely used MEXE method of assessment, which dates back to the 1940s, has very limited predictive capability and offers little scope for future enhancement). Weathering, continually increasing traffic volumes and factors such as the increased frequency of flood events brought about by climate change (affecting bridges over water) only serve to exacerbate the situation. Furthermore, although the primary focus of recent research has been on prediction of structural failure (the `ultimate limit state'), prediction of the level of service load above which incremental damage occurs (the `permissible limit state') is now a key priority for infrastructure owners, who are under increasing pressure to provide transport networks which are resilient. However, a significant barrier to delivering this using existing tools is that current assessment codes prescribe a fixed ratio between the ultimate and permissible load carrying capacities, which, given the diverse range of bridges in the field, is inappropriate and can lead to highly imprecise bridge assessments, and in turn to major economic implications.The present situation stems from our limited understanding of the 'real-world' behaviour of masonry arch bridges, which typically contain soil fill material surrounding and interacting with the arch barrel when loading is applied, and where both working (cyclic) and ultimate loading regimes are important. Developing an improved understanding of such behaviour is the main focus of this project. To achieve this, highly instrumented soil-arch interaction tests will be undertaken, with low-friction, clear sided, medium and full-scale test chambers and state-of-the-art Particle Image Velocimetry (PIV) techniques used to ensure a comprehensive and high quality experimental data-set is obtained. Test variables will include loading type (quasi-static vs. cyclic), bridge type (road vs. railway), fill material type and the presence or otherwise of near-traffic surface strong / stiff layers. Numerical modelling techniques and novel `system identification' techniques will be employed to ensure the full experimentally obtained data-set is used when validating the models developed. Finally, the ultimate objective is to use the improved understanding obtained to develop more rational assessment tools for use by engineers.

  • Funder: UKRI Project Code: EP/I010777/1
    Funder Contribution: 327,215 GBP
    Partners: BALFOUR BEATTY RAIL, Delft University of Technology, Arup Group Ltd, UNIV OF ILLINOIS AT URBANA-CHAMPAIGN, University of Southampton

    The OCCASION project brings together the University of Southampton's expertise in railway simulation and control (Transportation Research Group) with more generic expertise in operational research (Centre for Operational Research, Management Science and Information Systems). This project will identify and assess innovative approaches to overcoming nodal capacity constraints by examining the scope for technological improvements and operational changes. Although the emphasis is on modelling, it will also cover technological and operational issues. This will include examination of incremental changes, such as improved design of points, changes in signal spacing and overlaps, but also more radical changes including concepts from other modes (e.g. intelligent speed adaptation) and a relaxation of the Rules of the Route/Plan. We will adopt a layered approach by examining nodes of increasing complexity on the South West Main Line before developing a detailed case study of Reading station and its approaches. Our methodology will consist of four main elements. Firstly, we will provide a state of the art review which will examine how nodal capacity problems have been tackled to date in Britain and overseas. We will also examine systematic approaches to innovative problem solving, as proposed by the TRIZ methodology and general systems theory. Second, we will develop a generic meso-level model and simulation tool, based on RailSys, which will determine train routeings and schedules, levels of disruption and reactionary delay and measures of capacity utilisation at nodes. Third, we will develop a micro-level optimisation by applying production scheduling techniques to rail scheduling, and by specifically investigating shifting bottleneck procedures and local search approaches. Fourth, we will integrate the simulation and optimisation models by using a multi-commodity integer programming formulation to examine cost versus service quality trade-offs, using techniques we have previously applied to rail freight. This will be used to determine the most effective technological solutions (including enhancements to signalling, switches and crossings) and operational solutions (including dynamic traffic management). In undertaking this work, we will be assisted by our industrial partners, Arup (operations) and Balfour Beatty Rail (technology). Arup will also use the Legion simulation model to determine the extent that pedestrian movements within the station may constrain the scheduling of trains through the station. Our key outputs will be prototype software tools that will assess the extent to which nodal capacity can be increased. This could be subsequently applied to other bottlenecks on the National Rail network. An advice guide would also be produced on measures to overcome capacity constraints at nodes.