Powered by OpenAIRE graph
Found an issue? Give us feedback

FEI Company

Country: United States
10 Projects, page 1 of 2
  • Funder: UKRI Project Code: EP/E030602/1
    Funder Contribution: 296,216 GBP

    Mobile phones and modern electronic devices in general are becoming increasingly smaller, faster and more powerful. This is possible because electronic circuits required for their operation become smaller and smaller allowing the devices to shrink or to add more circuits in the same volume. These circuits are based on the principle that the conductivity in certain well specified areas changes when a voltage is applied. This is achieved by putting a few atoms with fewer or more electrons, called dopant atoms, into a semiconductor material such as silicon. It is crucial that exactly the correct number of atoms are put into exactly the right place. This is challenging in itself but in addition we have to make sure that we can confirm that we have achieved the right number of dopant atoms in the right place, because otherwise the device will not work to its specification. This is called dopant mapping because it links the number of dopant atoms to spatial coordinates in one (1D), two (2D) or three(3D) dimensions. For future devices we need to know how the number of dopants changes within three nanometers in 3D. The main aim of the work proposed here is to provide a solution to the above challenge. Because it is such a difficult problem to tackle many techniques have been developed so far but all have short comings. One such technique is to use a scanning electron microscope (SEM), where electrons of certain energy impinge on a surface causing other electrons, called secondary electrons (SE)s, to leave that surface. The number of SEs depends on the number of dopant atoms in the irradiated region but in a complex way and accurate quantification is therefore difficult. Also this approach does not have the potential to give us the information we need from regions as small as 3nm in diameter because, even when our impinging electron beam is that small, SEs in silicon can come from atoms12 times further below the surface. To solve this problem we propose to exploit another property of the SEs and this is their energy. SEs have a range of energies (energy spectrum) depending on how deep below the surface they were generated. We anticipate that we will be able to locate dopant atoms with a few nanometer resolutions by using high energy SEs only. We hope to obtain an accurate quantification by measuring the shift of the energy spectra of differently doped regions. To extend the 2D technique to 3D we need to remove thin layers of material in a controlled way and apply the 2D technique for each layer. Focused ion beam (FIB) instruments are made for this purpose and operate by firing Ga+ ions of a certain energy (normally 30kV) at the target surface, which leads to the removal of target surface atoms. A side effect of this technique is the incorporation of Ga in the surface. We have found that this effect is so pronounced at 30kV that a quantification of dopants is not possible. Therefore we propose to add a special low energy module to our existing FIB that allows us to reduce the Ga ion energy by up to 120 times, thus reducing the incorporation of Ga and other damage in the target surface. The proposed work addresses all the issues which currently hamper accurate, high resolution (3D) dopant mapping in the SEM. It therefore has the potential to bring us all one step closer to smaller, better and more powerful semiconductor devices in the future.

    more_vert
  • Funder: UKRI Project Code: EP/E029892/1
    Funder Contribution: 45,701 GBP

    Mobile phones and modern electronic devices in general are becoming increasingly smaller, faster and more powerful. This is possible because electronic circuits required for their operation become smaller and smaller allowing the devices to shrink or to add more circuits in the same volume. These circuits are based on the principle that the conductivity in certain well specified areas changes when a voltage is applied. This is achieved by putting a few atoms with fewer or more electrons, called dopant atoms, into a semiconductor material such as silicon. It is crucial that exactly the correct number of atoms are put into exactly the right place. This is challenging in itself but in addition we have to make sure that we can confirm that we have achieved the right number of dopant atoms in the right place, because otherwise the device will not work to its specification. This is called dopant mapping because it links the number of dopant atoms to spatial coordinates in one (1D), two (2D) or three(3D) dimensions. For future devices we need to know how the number of dopants changes within three nanometers in 3D. The main aim of the work proposed here is to provide a solution to the above challenge. Because it is such a difficult problem to tackle many techniques have been developed so far but all have short comings. One such technique is to use a scanning electron microscope (SEM), where electrons of certain energy impinge on a surface causing other electrons, called secondary electrons (SE)s, to leave that surface. The number of SEs depends on the number of dopant atoms in the irradiated region but in a complex way and accurate quantification is therefore difficult. Also this approach does not have the potential to give us the information we need from regions as small as 3nm in diameter because, even when our impinging electron beam is that small, SEs in silicon can come from atoms12 times further below the surface. To solve this problem we propose to exploit another property of the SEs and this is their energy. SEs have a range of energies (energy spectrum) depending on how deep below the surface they were generated. We anticipate that we will be able to locate dopant atoms with a few nanometer resolutions by using high energy SEs only. We hope to obtain an accurate quantification by measuring the shift of the energy spectra of differently doped regions. To extend the 2D technique to 3D we need to remove thin layers of material in a controlled way and apply the 2D technique for each layer. Focused ion beam (FIB) instruments are made for this purpose and operate by firing Ga+ ions of a certain energy (normally 30kV) at the target surface, which leads to the removal of target surface atoms. A side effect of this technique is the incorporation of Ga in the surface. We have found that this effect is so pronounced at 30kV that a quantification of dopants is not possible. Therefore we propose to add a special low energy module to our existing FIB that allows us to reduce the Ga ion energy by up to 120 times, thus reducing the incorporation of Ga and other damage in the target surface. The proposed work addresses all the issues which currently hamper accurate, high resolution (3D) dopant mapping in the SEM. It therefore has the potential to bring us all one step closer to smaller, better and more powerful semiconductor devices in the future.

    more_vert
  • Funder: UKRI Project Code: BB/F011105/1
    Funder Contribution: 232,183 GBP

    Field emission gun scanning electron microscopy (FEG-SEM) is a type of microscopy capable of producing very high resolution images of the surface of a sample. It has a wide range of applications in biological and materials science in which researchers wish to visualise and analyse the surface of a sample over a wide range of magnifications. Field emmision gun scanning electron microscopy can be used to image over a large surface area, can be used to image bulk materials as well as thin films or spots and modern microscopes can image structures as small as one or two nanometres. Conventional FEG-SEM requires samples to be imaged under a high vacuum which means that specimens, for example biological materials which are wet, would produce a lot of vapour which interferes with the images. To visualise biological specimens by conventional FEG-SEM the specimens have to be dried and coated, which can distort images of structures. Another form of SEM, called environmental SEM (ESEM) allows samples to be visualised in low pressure gaseous environments and high humidity which means that biological samples can be imaged in their hydrated state either directly or in the frozen state. In this application we are seeking to replace a conventional SEM which is 27 years old, still requires film processing (does not acquire digital images) and frequently breaks down. We wish to purchase a versatile high resolution low-vacuum FEG-SEM and a cryo-workstation. The microscope is critically required for a large number of current and future projects in biological sciences, in particular research in tissue engineering, biomaterials, structural molecular and cellular biology. The microscope requested, is the most versatile high resolution feild emmision gun electron microscope available with extended low-vacuum capabilities. A major feature is that it does with a single tool, what used to require multiple systems. The scanning electron microscope has three modes of operation: high vacuum, low vacuum and environmental scanning (ESEM). The resolution achievable under different modes is 1-nanometres. The equipment will directly replace the old SEM in the current electron microscope unit in the Faculty of Biological Sciences. No refurbishment will be required. The use of the equipment will be supported by a Faculty funded full time technician. The microscope will be used to image a range of different specimens carried out by numerous researchers and postgraduate students. Examples of specimens that will be imaged include three dimensional collagenous scaffolds which are used in tissue engineering, cells adhering to and growing in tissue engineering scaffolds, nanoparticles produced by biomaterials used in hip and knee replacements, nanoparticles in body tissues and in environmental samples, virus particles, fibrils of proteins that cause disease such as amyloid and prion proteins and proteins that cause muscles to contract and bacteria to move.

    more_vert
  • Funder: UKRI Project Code: EP/M010619/1
    Funder Contribution: 1,219,150 GBP

    Our previous platform grant (PG) was aimed at developing the residual stress and imaging unit to extend our measurement and imaging capability beyond existing time and length scales and to become a world leading centre. This has now been achieved. The international impact of our research was recognised by the award of the most prestigious prize in the HE sector, the Queen's Anniversary Prize for Higher and Further Education (2012-2014) for "New Techniques in X-Ray Imaging of Materials Critical for Power, Transport and Other Key Industries." Further we have just been awarded £18m by HEFCE and £4.2m by EPSRC for capital investment to achieve a step jump in our instrumentation. This PG renewal will enable us to invent new, and develop emerging, techniques to see in 3D events that have never been seen this way before. This will maximise the benefit of the capital investment bringing together X-ray and electron imaging to examine materials behaviour under demanding environments. Many of the instruments will be completely new. The PG will enable us to have a multidisciplinary team of mathematicians, detector experts, instrument developers and applications materials scientists to explore new regimes and undertake new science. For example, normally X-rays pictures are collected in black in white (just like the x-ray radiographs in hospitals). We have developed a detector that can see in 'colour'. This will enable us to 'see' the composition of the objects in our 3D images. Normally X-ray imaging can see different phases but not the grains making up the materials. Recently together with scientists in Denmark and at the European Synchrotron in Grenoble we have developed a method to see the different grains inside a sample non-destructively. Currently this must be done using synchrotron X-rays at large facilities - we will develop a laboratory system capable of this. Finally we have recently been awarded an 5 x EPSRC Centres for Doctoral Training and we will train these PhD students in the imaging techniques we develop through the PG.

    visibility900
    visibilityviews900
    downloaddownloads1,388
    Powered by Usage counts
    more_vert
  • Funder: UKRI Project Code: BB/D524759/1
    Funder Contribution: 198,000 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.