
Petrobank Energy and Resources Ltd
Petrobank Energy and Resources Ltd
4 Projects, page 1 of 1
assignment_turned_in Project2012 - 2015 Petrobank Energy and Resources Ltd, University of BirminghamPetrobank Energy and Resources Ltd,University of BirminghamFunder: UKRI Project Code: EP/J008303/1Funder Contribution: 503,961 GBPExtensive unexploited resources of heavy oil and bitumen exist, for example in Canada and Venezuela, as well as heavier deposits under the North Sea UK, which could potentially be utilized as the production of conventional light crude declines. Heavy oil and bitumen are more difficult to recover than conventional crude, requiring mining or specialized in-situ recovery techniques followed by upgrading to make them suitable for use as a fuel. Toe to heel air injection (THAITM) is an in-situ combustion and upgrading process in which air is injected to a horizontal well to feed combustion of a small fraction of the oil (up to 15 %). The heat generated causes the oil to flow along the well, where thermal upgrading reactions occur, leading to upgrading of the oil (by 4-6 API). CAPRI is a catalytic add-on to THAI in which catalyst is packed around the well to effect further catalytic upgrading reactions, such as hydrotreatment, however previous studies showed that the catalyst lifetime and process effectiveness are limited by coke deposition upon the catalyst. Additionally the costs and challenges of packing the well with pelleted catalyst prior to starting up also make the CAPRI process less economically attractive. The current proposal seeks to develop cheap, effective nanoparticulate catalysts which could be conveyed into the well by air or as slurry during operation, thereby avoiding the requirement for packing the well with catalyst prior to start up and to reduce the amount of deactivation and bed blockage that occurs by coke deposition upon pelleted catalysts. Initially, readily available iron oxide nanoparticles will be tested as a base-case. Nanoparticulate catalysts will also be prepared by supporting the metal upon bacteria, using a method in which metal containing solution is reduced in the presence of a bacterial culture, followed by centrifuge and drying which kills the live bacteria. The method has the advantages of being able to utilize scrap metal solutions and thus facilitate recycling of metals from waste sources, and it may be tuned to engineer nanoparticles of desired size and properties (e.g. crystal structures). Here we seek to develop, test and scale up the production of biogenic Fe catalysts for the upgrading of oil in the THAI process. Furthermore, waste road dusts contain deposits of catalytic metals from the exhaust of vehicular catalytic converters and these will be converted into cheap mixed metal catalysts by economically proven biohydrometallurgical methods for testing in the THAI process. Key to the effectiveness of utilizing nanoparticle catalysts will be the ability to contact them with oil in the mobile oil zone and flame front of the well, where the reaction is taking place. Studies of the rock void structure will be carried out using techniques such as X-Ray microtomography. Monte Carlo and Lattice Boltzmann simulations will be used to study the pneumatic conveying of particles into the reservoir and to study penetration and distribution of particles within the void space of the rocks. Conveying of slurry catalysts and process performance will be modeled using STARS reservoir simulation software. Evaluation of the different catalysts will be performed experimentally under real conditions using a rig developed under a previous project. The effect of variables such as gas:oil ratio, temperature, pressure and gas composition will be studied experimentally, in order to select the best catalyst and understand the conditions required for maximum upgrading. The experiments will also indicate whether catalyst deactivation occurs during use and enable conditions to be tuned to avoid deactivation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::88a19bf40ce32590982976db07edc070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 0visibility views 0 download downloads 19 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::88a19bf40ce32590982976db07edc070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2007 - 2010 University of Birmingham, Petrobank Energy and Resources LtdUniversity of Birmingham,Petrobank Energy and Resources LtdFunder: UKRI Project Code: EP/E057977/1Funder Contribution: 422,726 GBPHeavy crude oil and bitumen are a vast, largely unexploited hydrocarbon resource, with barely 1% produced so far, compared with more than 50% of conventional light oil (like the North Sea). More than 80% of this heavy, unconventional oil, lies in the Western hemisphere, whereas more than 80% of conventional light oil lies in the Eastern hemisphere (mainly in the Middle East). Over the next 10-30 years, geopolitical factors, and also the emerging strength of Asian countries, especially India and China, will create increasing tensions and uncertainty, with regard to the availability and supply of crude oil. Alongside gas, nuclear and renewables, crude oil will continue to be an important part of the UK's 'energy mix' for decades to come. How will the crude oil we need for industry and transportation be obtained and will it be as secure as it was from the North Sea?The huge Athabasca Oil Sands deposits in Canada (1.5 trillion barrels) provides an opportunity for the UK to secure access to a long-term, stable supply. The first step towards this was the development of a new technology, THAI - 'Toe-to-Heel Air Injection', to produce Oil Sands bitumen and heavy oil. It was discovered by the Improved Oil Recovery group at the University Bath, in the 1990's, and is currently being field tested at Christina Lake, Alberta, Canada. In 1998, in collaboration with the Petroleum Recovery Institute (PRI), Calgary, Canada, the Bath group discovered another process, based on THAI, called CAPRI. The THAI-CAPRI processes have the potential to convert bitumen and heavy crude into virtually a light crude oil, of almost paraffin-like consistency, at a fraction of the cost of conventional surface processing. A surface upgrading plant has recently been proposed for the UK, at a cost of $2-3 billion.The advantage of CAPRI is that it creates a catalytic reactor in the petroleum reservoir, by 'sleeving' a layer of catalyst around the 500-100 m long horizontal production well, inside the reservoir. The high pressure and temperature of the reservoir enable the thermal cracking and hydroconversion reactions to take place, so that only light, converted oil is produced at the surface. Apart from the cost of the catalyst, which can be a standard refinery catalyst, the CAPRI reactor is virtually free! All that is needed is to inject compressed air, in order to propagate a combustion front in a 'toe-to-heel' manner along the horizontal production well.In collaboration with the University of Birmingham, the project will investigate the effectiveness of a range of catalyst for use in the CAPRI process. The University of Birmingham team, led by Dr. Joe Wood, will investigate the long-term survivability of the catalysts, which is critical to operation of CAPRI. Once the catalyst is emplaced around the horizontal well, it will be expensive to recover or replace it. Previous 3D combustion cell experiments conducted by the Bath team, only allowed catalyst operating periods of a few hours, whereas in practice, the catalyst will need to survive, remain active, for days, or weeks. The Bath team will undertake detailed studies to characterise the internal pore structure of the catalysts used in the experiments, to obtain fundamental information on catalyst deactivation, which can be related to the process conditions and oil composition. They will also develop a detailed numerical model of the CAPRI reactor. This will provide a tool to explore 'fine details' of the THAI-CAPRI process, which will aid in the selection/optimisation of the most suitable catalysts. The model will be incorporated into a larger model using the STARS reservoir simulator. Preliminary reservoir simulations will be made to explore the potential operating conditions for CAPRI.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f175644d3d6a6dd046eded9603155bbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f175644d3d6a6dd046eded9603155bbc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2011 University of Bath, Petrobank Energy and Resources LtdUniversity of Bath,Petrobank Energy and Resources LtdFunder: UKRI Project Code: EP/E059430/1Funder Contribution: 312,723 GBPHeavy crude oil and bitumen are a vast, largely unexploited hydrocarbon resource, with barely 1% produced so far, compared with more than 50% of conventional light oil (like the North Sea). More than 80% of this heavy, unconventional oil, lies in the Western hemisphere, whereas more than 80% of conventional light oil lies in the Eastern hemisphere (mainly in the Middle East). Over the next 10-30 years, geopolitical factors,and also the emerging strength of Asian countries, especially India and China, will create increasing tensions and uncertainty, with regard to the availability and supply of crude oil. Alongside gas, nuclear and renewables, crude oil will continue to be an important part of the UK's 'energy mix' for decades to come. How will the crude oil we need for industry and transportation be be obtained and will it be as secure as it was from the North Sea?The huge Athabsca Oil Sands deposits in Canada (1.5 trilllion barrels) provides an opportunity for the UK to secure access to a long-term, stable supply. The first step towards this was the development of a new technology,THAI - 'Toe-to-Heel Air Injection', to produce Oil Sands bitumen and heavy oil. It was discovered by the Improved Oil Recovery group at the University Bath, in the 1990's, and is currently being field tested at Christina Lake, Alberta, Canada. In 1998, in collaboration with the Petroleum Recovery Institute (PRI), Calgary, Canada, the Bath goup discovered another process,based on THAI, called CAPRI. The THAI-CAPRI processes have the potential to convert bitumen and heavy crude into virtually a light crude oil, of almost pararaffin-like consistency, at a fraction of the cost of conventional surface processing. A surface upgrading plant has recently been proposed for the UK, at a cost of $2-3 billion.The advantage of CAPRI is that it creates a catalytic reactor in the petroleum reservoir, by 'sleeving' a layer of of catalyst around the 500-100 m long horizontal production well, inside the reservoir. The high pressure and temperature in the reservoir enable thermal cracking and hydroconversion reactions to take place, so that only light, converted oil is produced at the surface. Apart from the cost of the catalyst, which can be a standard refinery catalyst, the CAPRI reactor is virtually free! All that is needed is to inject compressed air, in order to propagate a combustion front in a 'toe-to-heel' manner along the horizontal production well.In collaboration with the University of Birmingham, the project will investigate the effectiveness of a range of catalysts for use in the CAPRI process. The University of Birmingham team, led by Dr. Joe Wood, wiil investigate the long-term survivability of the catalysts,which is critical for the operation of CAPRI. Once the catalyst is emplaced around the horizontal well, it will be expensive to recover or replace it. Previous 3D combustion cell experiments conducted by the Bath team, only allowed catalyst operating periods of a few hours, whereas, in practise, the catalyst will need to survive, remain active, for days, or weeks. The Bath team will undertake detailed studies to characterise the internal pore structure of the catalysts used in the experiments, to obtain fundamental information on catalyst deactivation, which can be related to the process conditions and oil composition. They will also develop a detailed numerical model of the CAPRI reactor. This will provide a tool to explore 'fine details' of the THAI-CAPRI process, which will aid in the selection/optimisation of the most suitable catalysts. The model will be incorporated into a larger model using the STARS reservoir simulator. Preliminary reservoir siumlations will be made to explore the potential operating conditions for CAPRI at field -scale.On a commercial-scale, the THAI-CAPRI process could translate the oil resource in the Athabasca Oil Sands into the world's biggest, exceeding the Middle East.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c3543bd877e91b85ae7537798a7eafd9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c3543bd877e91b85ae7537798a7eafd9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu- FCO,UWC,UCT,Innovate UK,ISIS Innovation Ltd,The Coal Authority,City of Toronto,University of Granada,University of Belgrade,Durham University,University of Exeter,C-Tech Innovation (United Kingdom),University of Surrey,Plymouth University,Veolia Environmental Services,University of Quebec,University of Birmingham,CatScI Ltd,Cristal Pigment UK Ltd,Petrobank Energy and Resources LtdFunder: UKRI Project Code: NE/L014076/1Funder Contribution: 638,057 GBP
30 years' research on metal biorecovery from wastes has paid scant attention to strong CONTEMPORARY demands for (i) conservation of dwindling vital resources (e.g platinum group metals (PGM), recently rare earth elements, (REE), base metals (BMs) and uranium) and (ii) the unequivocal need to extract/refine them in a non-polluting, low-energy way. 21stC technologies increasingly rely on nanomaterials which have novel properties not seen in bulk materials. Bacteria can fabricate nanoparticles (NPs), bottom up, atom by atom, with exquisite fine control offered by enzymatic synthesis and bio-scaffolding that chemistry cannot emulate. Bio-nanoparticles have proven applications in green chemistry, low carbon energy, environmental protection and potentially in photonic applications. Bacteria can be grown cheaply at scale for facile production. We have shown that bacteria can make nanomaterials from secondary wastes, yielding, in some cases, a metallic mixture which can show better activity than 'pure' nanoparticles. Such fabrication of structured bimetallics can be hard to achieve chemically. For some metals like rare earths and uranium (which often co-occur in wastes) their biorecovery from scraps e.g. magnets (rare earths) and wastes (mixed U/rare earths), when separated, can make 'enriched' solids for delivery into further commercial refining to make new magnets (rare earths) or nuclear fuel (U). Biofabricating these solids is often beyond the ability of living cells but they can form scaffolds, with enzymatic processes harnessed to make biomineral precursors, often selectively. B3 will invoke tiered levels of complexity, maturity and risk. (i) Base metal mining wastes (e.g. Cu, Ni) will be biorefined into concentrated sludges for chemical reprocessing or alternatively to make base metal-bionanoproducts. (ii) Precious metal wastes will be converted into bionanomaterials for catalysis, environmental and energy applications. (iii) Rare earth metal wastes will be biomineralised for enriched feed into further refining or into new catalysts. (iv) Uranium-waste will be biorefined into mineral precursors for commercial nuclear fuels. In all, the environment will be spared dual impacts of both primary source pollution AND the high energy demand of processing from primary 'crude'. Metallic scraps are tougher, requiring acids for dissolution. Approaches will include the use of acidophilic bacteria, use of alkalinizing enzymes or using bacteria to first make a chemical catalyst (benignly) which can then convert the target metal of interest from the leachate into new nanomaterials (a hybrid living/nonliving system, already shown). Environmentally-friendly leaching & acids recycle will be evaluated and leaching processes optimised via extant predictive models. The interface between biology, chemistry, mineralogy and physics, exemplified by nanoparticles held in their unique 'biochemical nest', will receive special focus, being where major discoveries will be made; cutting edge technologies will relate structure to function, and validate the contribution of upstream waste doping or 'blending'; these, as well as novel materials processing, will increase bio-nanoparticle efficacy. Secondary wastes to be biorefined will include magnet scraps (rare earths), print cartridges (precious metals), road dusts (PMs, Fe,Ce) & metallurgical wastes (mixed rare earths/base metals/uranium). Their complex, often refractory nature gives a higher 'risk' than mine wastes but in compensation, the volumes are lower, & the scope for 'doping' or 'steering' to fabricate/steer engineered nanomaterials is correspondingly higher. B3 will have an embedded significant (~15%) Life Cycle Analysis iterative assessment of highlighted systems, with end-user trialling (supply chains; validations in conjunction with an industrial platform). B3 welcomes new 'joiners' from a raft of problem holders brought via Partner network backup.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3c14d851ad4f23b65b8050d74d4b68d6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euvisibility 0visibility views 0 download downloads 3 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3c14d851ad4f23b65b8050d74d4b68d6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
