Actions
  • shareshare
  • link
  • cite
  • add
add
Other research product . 2018

Intercomparison of slant column measurements of NO2 and O4 by MAX-DOAS and zenith-sky UV and visible spectrometers

Roscoe, H. K.; Roozendael, M.; Fayt, C.; Piesanie, A.; Abuhassan, N.; Adams, C.; Akrami, M.; +44 Authors
Open Access
English
Published: 15 Jan 2018
Abstract

In June 2009, 22 spectrometers from 14 institutes measured tropospheric and stratospheric NO2 from the ground for more than 11 days during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI), at Cabauw, NL (51.97° N, 4.93° E). All visible instruments used a common wavelength range and set of cross sections for the spectral analysis. Most of the instruments were of the multi-axis design with analysis by differential spectroscopy software (MAX-DOAS), whose non-zenith slant columns were compared by examining slopes of their least-squares straight line fits to mean values of a selection of instruments, after taking 30-min averages. Zenith slant columns near twilight were compared by fits to interpolated values of a reference instrument, then normalised by the mean of the slopes of the best instruments. For visible MAX-DOAS instruments, the means of the fitted slopes for NO2 and O4 of all except one instrument were within 10% of unity at almost all non-zenith elevations, and most were within 5%. Values for UV MAX-DOAS instruments were almost as good, being 12% and 7%, respectively. For visible instruments at zenith near twilight, the means of the fitted slopes of all instruments were within 5% of unity. This level of agreement is as good as that of previous intercomparisons, despite the site not being ideal for zenith twilight measurements. It bodes well for the future of measurements of tropospheric NO2, as previous intercomparisons were only for zenith instruments focussing on stratospheric NO2, with their longer heritage.

20 references, page 1 of 2

Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O. C., Vogel, A., Hartmann, M., Bovensmann, H., Frerik, J., and Burrows, J. P.: Measurements of molecular absorption spectra with the SCIAMACHY Pre-Flight Model: Instrument characterization and reference spectra for atmospheric remote sensing in the 230-2380 nm region, J. Photochem. Photobiol. A., 157, 167-184, 2003.

Brinksma, E. J., Pinardi, G., Volten, H., Braak, R., Richter, A., Schonhardt, A., van Roozendael, M., Fayt, C., Hermans, C., Dirksen, R. J., Vlemmix, T., Berkhout, A. J. C., Swart, D. P. J., Oetjen, H., Wittrock, F., Wagner, T., Ibrahim, O. W., de Leeuw, G., Moerman, M., Curier, R. L., Celarier, E. A., Cede, A., Knap, W. H., Veefkind, J. P., Eskes, H. J., Allaart, M., Rothe, R., Piters, A. J. M., and Levelt, P. F.: The 2005 and 2006 DANDELIONS NO2 and Aerosol Intercomparison Campaigns, J. Geophys. Res., 113, D16S46, doi:10.1029/2007JD008808, 2008. [OpenAIRE]

Brewer, A. W., McElroy, C. T., and Kerr, J. B.: Nitrogen dioxide concentrations in the atmosphere, Nature, 246, 129-133, 1973.

Chance, K. and Spurr, R. J. D.: Ring effect studies: Rayleigh scattering including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum, Appl. Opt., 36, 5224-5230, 1997. [OpenAIRE]

Fleischmann, O. C., Hartmann, M., Burrows, J. P., and Orphal, J.: New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy, J. Photochem. Photobiol. A, 168, 117-132, 2004.

Hains, J. C., Boersma, K. F., Kroon, M., Dirksen, R. J., Cohen, R. C., Perring, A. E., Bucsela, E., Volten, H., Swart, D. P. J., Richter, A., Wittrock, F., Schoenhardt, A., Wagner, T., Ibrahim, O. W., Van Roozendael, M., Pinardi, G., Gleason, J. F., Veefkind, J. P., and Levelt, P.: Testing and improving OMI DOMINO tropospheric NO2 using observations from the DANDELIONS and INTEX-B validation campaigns, J. Geophys. Res., 115, D05301, doi:10.1029/2009JD012399, 2010.

Hofmann, D. J., Bonasoni, P., De Maziere, M., Evangelisti, F., Giovanelli, G., Goldman, A., Goutail, F., Harder, J., Jakoubek, R., Johnston, P. V., Kerr, J. E., Matthews, W. A., McElroy, C. T., McKenzie, R. L., Mount, G., Platt, U., Pommereau, J-P., Sarkissian, A., Simon, P., Solomon, S., Stutz, J., Thomas, A., Van Roozendael, M., and Wu, E.: Intercomparison of UV/visible spectrometers for measurements of stratospheric NO2 for the network for the detection of stratospheric change, J. Geophys. Res., 100, 16765-16791, 1995.

Ho¨ nninger, G. and U. Platt: The Role of BrO and its Vertical Distribution during Surface Ozone Depletion at Alert, Atmos. Environ., 36, 2481-2489, 2002.

Ho¨ nninger, G., von Friedeburg, C., and Platt, U.: Multi axis differential optical absorption spectroscopy (MAX-DOAS), Atmos. Chem. Phys., 4, 231-254, doi:10.5194/acp-4-231-2004, 2004. [OpenAIRE]

Kurucz, R. L., Furenlid, I., Brault, J., and Testerman, L.: Solar flux atlas from 296 nm to 1300 nm, National Solar Observatory Atlas No. 1, 1984.

Funded by
EC| MEGAPOLI
Project
MEGAPOLI
Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation
  • Funder: European Commission (EC)
  • Project Code: 212520
  • Funding stream: FP7 | SP1 | ENV
Related to Research communities
moresidebar