Actions
  • shareshare
  • link
  • cite
  • add
add
Other research product . 2018

Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; +19 Authors
Open Access
English
Published: 15 Jan 2018
Abstract

Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

55 references, page 1 of 6

RAemeifseegrgeer, nF.,cSetusrm, P., Graf, P., Sodemann, H., Pfahl, S., Knohl, A., and Wernli, H.: Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spec-

Aterommeitseres:gagn einrs,truFm.e,nt cShatruacrtmeris,atioPn.,studGy, rAatfm,os.PM.,easS.odema Tech., 5, 1491-1511, doi:10.5194/amt-5-1491-2012, 2012.

BatcKhelnoro,Rh. lL,., SAtro.n,g, Ka.n,dLindWenmearienr,lRi,., MHitt.e:rmeieMr, Re.aLs.,uring v Fast, H., Dr2ummond, J. R., and Fogal, P. F.: A new Bruker IFS δ H in at ospheric 12a5nHRd FTIR spectrometemrfor the Polar EnwviraotnemrentvAatpmoo-ur usin splhaersiceRr-ebseaarscheLdabsopraetocrytratoEmureektae,Crsan:adaa:nmeiansusrtermuenmts ent cha and comparison with the existing Bomem DA8 spectrometer, J. AAtmotsm.Oocesapn.hTeecrhincol., 2M6, e13a2s8-u1r3e40m,2e00n9.t Techniques, 5, Blumenstock, T., Kopp, G., Hase, F., Hochschild, G., Mikuteit, S., Ra1ff0al.s5ki1,U9.,4a/nad mRuth-n5ke-, 1R.4:O9b1se-r2va0tio1n2o,f unhustutapl :c/h/lowrinwew.atmo ac1tiv4a9tio1n /b2y0gr1ou2nd/-,ba2se0d1in2fr.ared and microwave spectroscopy in the late Arctic winter 2000/01, Atmos. Chem. Phys., 6, 897-

Ba90t5c, hdoei:l1o0.r5,19R4/a.cpL-6.-8,97S-2t0r0o6n,2g00,6.K., Lindenmaier, R., Boesch, H., Deutscher, N. M.,mWarneke, T., Byckling, K., Cogaong,al, P. Fast, H., Drum ond, J. R., and F A. J., Griffith, D. W. T., Notholt, J., Parker, R. J., and Wang, Z.: HDO/H2O ratio retrievals from GOSAT, Atmos. Meas. Tech. Discuss., 5, 6643-6677, doi:10.5194/amtd-5-6643-2012, 2012.

Craig, H.: Standard for Reporting concentrations of Deuterium and Oxygen-18 in natural waters, Science, 13, 1833-1834, doi:10.1126/science.133.3467.1833, 1961.

Dyroff, C., Fu¨ tterer, D., and Zahn, A.: Compact diode-laser spectrometer ISOWAT for highly sensitive airborne measurements of water-isotope ratios, Appl. Phys. B, 98, 537-548, doi:10.1007/s00340-009-3775-6, 2010.

Ehhalt, D.: Vertical profiles of HTO, HDO, and H2O in the Troposphere, Rep. NCAR-TN/STR-100, Natl. Cent. for Atmos. Res., Boulder, Colo., 1974. [OpenAIRE]

Frankenberg, C., Yoshimura, K., Warneke, T., Aben, I., Butz, A., Deutscher, N., Griffith, D., Hase, F., Notholt, J., Schneider, M., Schrejver, H., and Ro¨ ckmann, T.: Dynamic processes governing lower-tropospheric HDO/H2O ratios as observed from space and ground, Science, 325, 1374-1377, doi:10.1126/science.1173791, 2009.

Frankenberg, C., Wunch, D., Toon, G., Risi, C., Scheepmaker, R., Lee, J.-E., Wennberg, P., and Worden, J.: Water vapor isotopologues retrievals from high resolution GOSAT short-wave infrared spectra, Atmos. Meas. Tech. Discuss., 5, 6357-6386, doi:10.5194/amtd-5-6357-2012, 2012.

Garc´ıa, O. E., Schneider, M., Redondas, A., Gonza´lez, Y., Hase, F., Blumenstock, T., and Sepu´lveda, E.: Investigating the longterm evolution of subtropical ozone profiles applying groundbased FTIR spectrometry, Atmos. Meas. Tech., 5, 2917-2931, doi:10.5194/amt-5-2917-2012, 2012.

Funded by
NSERC
Project
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
,
EC| MUSICA
Project
MUSICA
Multi-platform remote sensing of isotopologues for investigating the cycle of atmospheric water
  • Funder: European Commission (EC)
  • Project Code: 256961
  • Funding stream: FP7 | SP2 | ERC
moresidebar