Powered by OpenAIRE graph
Found an issue? Give us feedback

STOP-HF

STEM CELL MODELS TO UNRAVEL THE SUSCEPTIBILITY AND RESILIENCE TO DEVELOP HEART FAILURE
Funder: European CommissionProject code: 715732 Call for proposal: ERC-2016-STG
Funded under: H2020 | ERC | ERC-STG Overall Budget: 1,496,880 EURFunder Contribution: 1,496,880 EUR
Open Access mandate
Research data: No
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
21
90
Description

The overarching objective of STOP-HF is to generate human induced pluripotent stem cells (hiPSC) derived cardiomyocytes from two specific forms of heart failure (HF) with a clear trigger to unravel common pathophysiological mechanisms involved in the early development of HF. The project is focused on two specific forms of HF, both with a clear trigger: pregnancy and anthracyclines. Better understanding of early molecular pathways leading to HF and knowledge about inter-individual susceptibility is needed. For detection of early changes on a molecular level cardiac tissue is needed. Generation of patient specific cardiac cells from skin fibroblasts (hiPSC technology) is a novel and innovative approach. SPECIFIC OBJECTIVES 1. Fabrication and maturation of 3D cardiac tissue from hiPS derived cardiomyocytes. 2. Generate and characterize hiPS derived cardiomyocytes and endothelial cells from females with pregnancy induced HF and unravel differences on transcriptome level. 3. Generate and characterize hiPSC derived cardiomyocytes from patients with high susceptibility and resilience to develop anthracycline-induced HF and compare them on transcriptome level. 4. Integrate the results for coding and non-coding RNAs from objective 1+2 and identify overlapping pathways. 5. Validate discoveries on transcriptome level in vitro, in vivo and apply for the development of HF in the general population. WORKPACKAGES WP1: Optimize fabrication and maturation of 3D cardiac tissue from hiPS derived cardiomyocytes WP 2A:Validate the model and compare hiPS derived cardiomyocytes and endothelial cells from PPCM and healthy sisters on transcriptome level; WP 2B:Validate the model and compare hiPS derived cardiomyocytes from both patients with high susceptibility and resilience to develop HF after anthracyclins on transcriptome level; WP 3:Integration of transcriptome data from WP 2A+2B; WP 4:Validation of novel pathways in vitro, in vivo and new onset HF in the general population.

Partners
Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 21
    download downloads 90
  • 21
    views
    90
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::1a5ea24ccddb2617f86eda0358efdfba&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down