Loading
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::771ea6e60fa1d2707641ee38b8b83ca1&type=result"></script>');
-->
</script>
The DART project aims to pioneer a ground-breaking capability to enhance the performance and energy efficiency of reconfigurable hardware accelerators for next-generation computing systems. This capability will be achieved by a novel foundation for a transformation engine based on heterogeneous graphs for design optimisation and diagnosis. While hardware designers are familiar with transformations by Boolean algebra, the proposed research promotes a design-by-transformation style by providing, for the first time, tools which facilitate experimentation with design transformations and their regulation by meta-programming. These tools will cover design space exploration based on machine learning, and end-to-end tool chains mapping designs captured in multiple source languages to heterogeneous reconfigurable devices targeting cloud computing, Internet-of-Things and supercomputing. The proposed approach will be evaluated through a variety of benchmarks involving hardware acceleration, and through codifying strategies for automating the search of neural architectures for hardware implementation with both high accuracy and high efficiency.