Powered by OpenAIRE graph
Found an issue? Give us feedback

Novel Approach to Rotorcraft Simulation Fidelity Enhancement and Assessment

Funder: UK Research and InnovationProject code: EP/P031277/1
Funded under: EPSRC Funder Contribution: 692,318 GBP
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
42
220

Novel Approach to Rotorcraft Simulation Fidelity Enhancement and Assessment

Description

The vision for this research is to develop a novel toolset for flight simulation fidelity enhancement. This represents a step-change in simulator qualification, is well-timed making a significant contribution to the UoL initiated NATO STO AVT-296-RTG activity and will have an immediate impact through engagement with Industry partners. High fidelity modelling and simulation are prerequisites for ensuring confidence in decision making during aircraft design and development, including performance and handling qualities estimation, control law development, aircraft dynamic loads analysis, and the creation of a realistic piloted simulation environment. The ability to evaluate/optimise concepts with high confidence and stimulate realistic pilot behaviour are the kernels of quality flight simulation, in which pilots can train to operate aircraft proficiently and safely and industry can design with lower risk. Regulatory standards such as CS-FSTD(H) and FAA AC120-63 describe the certification criteria and procedures for rotorcraft flight training simulators. These documents detail the component fidelity required to achieve "fitness for purpose", with criteria based on "tolerances", defined as acceptable differences between simulation and flight, typically +/- 10% for the flight model. However, these have not been updated for several decades, while on the military side, the related practices in NATO nations are not harmonised and have often been developed for specific applications. Methods to update the models for improved fidelity are mostly ad-hoc and, without a strong scientific foundation, are often not physics-based. This research will provide a framework for such harmonisation removing the barriers to adopting physics-based flight modelling and will create new, more informed, standards. In this research two aspects of fidelity will be tackled, predictive fidelity (the metrics and tolerances in the standards) and perceptual fidelity (pilot opinion). The predictive fidelity aspect of the research will use System Identification techniques to provide a systematic framework for 'enhancing' a physics-based simulation model. The perceptual fidelity research will develop a rational, novel process for task-specific motion tuning together with a robust methodology for capturing pilots' subjective assessment of the overall fidelity of a simulator. Extensive use will be made of flight simulation and real-world flight tests throughout this project in both the predictive and perceptual fidelity research.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 42
    download downloads 220
  • 42
    views
    220
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f339fedacde7a72967a4fa6ba075a579&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down