Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Biomechan...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Moderate aerobic exercise, but not dietary prebiotic fibre, attenuates losses to mechanical property integrity of tail tendons in a rat model of diet-induced obesity

Authors: Stephanie Crites; Venus Joumaa; Jaqueline Lourdes Rios; Andrew Sawatsky; David A. Hart; Raylene A. Reimer; Walter Herzog;

Moderate aerobic exercise, but not dietary prebiotic fibre, attenuates losses to mechanical property integrity of tail tendons in a rat model of diet-induced obesity

Abstract

Abstract The purpose of this study was to investigate the alterations with obesity, and the effects of moderate aerobic exercise or prebiotic dietary-fibre supplementation on the mechanical and biochemical properties of the tail tendon in a rat model of high-fat/high-sucrose (HFS) diet-induced obesity. Thirty-two male Sprague-Dawley rats were randomized to chow (n = 8) or HFS (n = 24) diets. After 12-weeks, the HFS fed rats were further randomized into sedentary (HFS sedentary, n = 8), exercise (HFS + E, n = 8) or prebiotic fibre supplementation (HFS + F, n = 8) groups. After another 12-weeks, rats were sacrificed, and one tail tendon was isolated and tested. Stress-relaxation and stretch-to-failure tests were performed to determine mechanical properties (peak, steady-state, yield and failure stresses, Young’s modulus, and yield and failure strains) of the tendons. The hydroxyproline content was also analyzed. The HFS sedentary and HFS + F groups had higher final body masses and fat percentages compared to the chow and HFS + E groups. Yield strain was reduced in the HFS sedentary rats compared to the chow rats. Peak and steady-state stresses, failure strain, Young’s modulus, and hydroxyproline content were not different across groups. Although the HFS + E group showed higher failure stress, yield stress, and yield strain compared to the HFS sedentary group, HFS + F animals did not produce differences in the properties of the tail tendon compared to the HFS sedentary group. These results indicate that exposure to a HFS diet led to a reduction in the yield strain of the tail tendon and aerobic exercise, but not fibre supplementation, attenuated these diet-related alterations to tendon integrity.

Related Organizations
Subjects by Vocabulary

Microsoft Academic Graph classification: medicine.medical_specialty Yield (engineering) medicine.medical_treatment Rat model Hydroxyproline chemistry.chemical_compound Internal medicine medicine Aerobic exercise Mechanical property Chemistry Prebiotic medicine.disease Obesity Tendon medicine.anatomical_structure Endocrinology

Medical Subject Headings: integumentary system humanities body regions

Keywords

Male, Tail, Biomedical Engineering, Biophysics, Diet, High-Fat, Rats, Sprague-Dawley, Tendons, Animals, Orthopedics and Sports Medicine, Obesity, Rehabilitation, Diet, Rats, Prebiotics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Related to Research communities
Social Science and Humanities
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.